
08-window-fuctions-indexes.md 8/29/2022

1 / 8

Window Functions and Indexes

Agenda

Window Functions and Indexes

Agenda

Window Functions

Syntax

Rank function

Row Number function

Other window functions

Indexes

Query Execution

Types of scans

Full table scans

Full Index scan

Index Range scan

Index seek

Some guidelines for optimizing MySQL queries

Window Functions

MySQL has supported window functions since version 8.0. The window functions allow you to solve query

problems in new, easier ways and with better performance.

Window functions operate on a window frame, or a set of rows that are somehow related to the current row.

They are similar to GROUP BY, because they compute aggregate values for a group of rows. However,

unlike GROUP BY, they do not collapse rows; instead, they keep the details of individual rows.

Let's see an example of a window function with our Jedi Academy database:

CREATE TABLE `students` (
 `id` int NOT NULL AUTO_INCREMENT,
 `first_name` varchar(255) NOT NULL,
 `last_name` varchar(255) NOT NULL,
 `email` varchar(255) NOT NULL,
 `phone` varchar(255),
 `birth_date` date,
 `address` varchar(255),
 `iq` int,
 `batch_id` int,
 PRIMARY KEY (`id`)
);

How can I get the student names along with the number of students in their batch? We would have to

use a subquery to get the number of students in each batch.

08-window-fuctions-indexes.md 8/29/2022

2 / 8

SELECT
 id,
 first_name,
 last_name,
 batch_id,
 (SELECT
 COUNT(*)
 FROM
 students s2
 WHERE
 s2.batch_id = s.batch_id)
FROM
 students s;

Another way to do the same thing is to use a window function which partitions the data into batches and

computes the number of students in each batch.

SELECT
 id,
 first_name,
 last_name,
 batch_id,
 COUNT(*) OVER (PARTITION BY batch_id) batch_students
FROM
 students;

Like the aggregate functions with the GROUP BY clause, window functions also operate on a subset of rows

but they do not reduce the number of rows returned by the query. In this example, the SUM() function

works as a window function that operates on a set of rows defined by the contents of the OVER clause. A

set of rows to which the SUM() function applies is referred to as a window.

Syntax

window_function_name(expression) OVER (
 [partition_defintion]
 [order_definition]
 [frame_definition]
)

The partition_clause breaks up the rows into chunks or partitions. Two partitions are separated by a

partition boundary. The window function is performed within partitions and re-initialized when crossing the

partition boundary. You can specify one or more expressions in the PARTITION BY clause. Multiple

expressions are separated by commas.

The partition_clause syntax looks like the following:

08-window-fuctions-indexes.md 8/29/2022

3 / 8

PARTITION BY <expression>[{,<expression>...}]

e.g.

PARTITION BY batch_id

The order_by_clause has the following syntax:

ORDER BY <expression> [ASC|DESC], [{,<expression>...}]

The ORDER BY clause specifies how the rows are ordered within a partition. It is possible to order data

within a partition on multiple keys, each key is specified by an expression. Multiple expressions are also

separated by commas.

Similar to the PARTITION BY clause, the ORDER BY clause is also supported by all the window functions.

However, it only makes sense to use the ORDER BY clause for order-sensitive window functions.

Rank function

The RANK() function is used mainly to create reports. It computes the rank for each row in the result set in

the order specified.

The ranks are sequential numbers starting from 1. When there are ties (i.e., multiple rows with the same

value in the column used to order), these rows are assigned the same rank. In this case, the rank of the next

row will have skipped some numbers according to the quantity of the tied rows. For this reason, the values

returned by RANK() are not necessarily consecutive numbers.

How can we get the students ranked by their IQs?

SELECT
 id,
 first_name,
 last_name,
 batch_id,
 iq,
 RANK() OVER(ORDER BY iq DESC) AS rank_number
FROM
 students s;

After the RANK(), we have an OVER() clause with an ORDER BY. The ORDER BY is mandatory for ranking

functions. Here, the rows are sorted in ascending order according to the column ranking_score. The order

is ascending by default; you may use ASC at the end of the ORDER BY clause to clarify the ascending order,

but it is not necessary.

08-window-fuctions-indexes.md 8/29/2022

4 / 8

How can we get the students ranked by their IQs in their batch?

SELECT
 id,
 first_name,
 last_name,
 batch_id,
 iq,
 RANK() OVER(PARTITION BY batch_id ORDER BY iq DESC) AS rank_number
FROM
 students s;

Row Number function

Another popular ranking function used in databases is ROW_NUMBER(). It simply assigns consecutive

numbers to each row in a specified order.

How can we get the students ranked by their IQs using the row number function?

SELECT
 id,
 first_name,
 last_name,
 iq,
 ROW_NUMBER() OVER(ORDER BY iq DESC) as rank_score
FROM
 students s;

The query first orders the rows by iq in descending order. It then assigns row numbers consecutively

starting with 1. The rows with ties in ranking_score are assigned different row numbers, effectively ignoring

the ties.

Other window functions

CUME_DIST

DENSE_RANK

FIRST_VALUE

LAST_VALUE

LEAD

LAG

Indexes

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin with

the first row and then read through the entire table to find the relevant rows. The larger the table, the more

this costs. If the table has an index for the columns in question, MySQL can quickly determine the position

https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html#function_cume-dist
https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html#function_dense-rank
https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html#function_first-value
https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html#function_last-value
https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html#function_lead
https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html#function_lag

08-window-fuctions-indexes.md 8/29/2022

5 / 8

to seek to in the middle of the data file without having to look at all the data. This is much faster than

reading every row sequentially.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. MySQL uses

indexes for these operations:

To find the rows matching a WHERE clause quickly.

To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally

uses the index that finds the smallest number of rows

To retrieve rows from other tables when performing joins. MySQL can use indexes on columns more

efficiently if they are declared as the same type and size.

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE.

CREATE TABLE `students` (
 `id` int NOT NULL AUTO_INCREMENT,
 `first_name` varchar(255) NOT NULL,
 `last_name` varchar(255) NOT NULL,
 `email` varchar(255) NOT NULL,
 `phone` varchar(255),
 `birth_date` date,
 `address` varchar(255),
 `iq` int,
 `batch_id` int,
 PRIMARY KEY (`id`),
 INDEX(phone)
);

Or you can create an index and then add it to the table. The syntax for creating an index is:

CREATE INDEX [some_index] ON [some_table] ([some_column],[other_column]);

CREATE INDEX phone on students(phone)

You can also create a composite index using the same syntax.

CREATE INDEX phone_email on students(phone, email);

Query Execution

The following steps happen when you execute a query:

�. The client sends the SQL statement to the server.

08-window-fuctions-indexes.md 8/29/2022

6 / 8

�. The server checks the query cache. If there s̓ a hit, it returns the stored result from the cache;

otherwise, it passes the SQL statement to the next step.

�. The server parses, preprocesses, and optimizes the SQL into a query execution plan.

�. The query execution engine executes the plan by making calls to the storage engine API.

�. The server sends the result to the client.

To begin, MySQL̓s parser breaks the query into tokens and builds a “parse tree” from them. The parser

uses MySQL̓s SQL grammar to interpret and validate the query. For instance, it ensures that the tokens in

the query are valid and in the proper order, and it checks for mistakes such as quoted strings that arenʼt

terminated.

The preprocessor then checks the resulting parse tree for additional semantics that the parser canʼt

resolve. For example, it checks that tables and columns exist, and it resolves names and aliases to ensure

that column references arenʼt ambiguous.

08-window-fuctions-indexes.md 8/29/2022

7 / 8

Next, the preprocessor checks privileges. This is normally very fast unless your server has large numbers of

privileges.

MySQL uses a cost-based optimizer, which means it tries to predict the cost of various execution plans and

choose the least expensive. The unit of cost is a single random four-kilobyte data page read.

Types of scans

Full table scans

A full table scan (also known as a sequential scan) is a scan made on a database where each row of the

table is read in a sequential (serial) order and the columns encountered are checked for the validity of a

condition. Full table scans are usually the slowest method of scanning a table due to the heavy amount of

I/O reads required from the disk which consists of multiple seeks as well as costly disk to memory transfers.

Full Index scan

If your table has a clustered index and you are firing a query that needs all or most of the rows i.e. query

without WHERE or HAVING clause, then it uses an index scan. It works similar to the table scan, during the

query optimization process, the query optimizer takes a look at the available index and chooses the best

one, based on information provided in your joins and where clause, along with the statistical information

database keeps.

The main difference between a full table scan and an index scan is that because data is sorted in the index

tree, the query engine knows when it has reached the end of the current it is looking for. It can then send

the query, or move on to the next range of data as necessary

Index Range scan

Index range scan is a common operation for accessing selective data. It can be bounded (bounded on both

sides) or unbounded (on one or both sides). Data is returned in the ascending order of index columns.

Multiple rows with identical values are sorted.

Index seek

When your search criterion matches an index well enough that the index can navigate directly to a particular

point in your data, that's called an index seek. It is the fastest way to retrieve data in a database. The index

seeks are also a great sign that your indexes are being properly used.

This happens when you specify a condition in WHERE clause like searching an employee by id or name if

you have a respective index.

Some guidelines for optimizing MySQL queries

Avoid using functions in predicates

SELECT * FROM students where upper(phone) = '123';

08-window-fuctions-indexes.md 8/29/2022

8 / 8

Because of the UPPER() function, the database doesnʼt utilize the index on COL1. If there isnʼt any

way to avoid that function in SQL, you will have to create a new function-based index or have to

generate custom columns in the database to improve performance.

Avoid using a wildcard (%) at the beginning of a predicate

SELECT * FROM students where phone like '%123';

The wildcard causes a full table scan.

Avoid unnecessary columns in SELECT clause Instead of using ‘SELECT *,̓ always specify columns in

the SELECT clause to improve MySQL performance. Because unnecessary columns cause additional

load on the database, slowing down its performance as well whole systematic process.

Pagination

Avoid SELECT DISTINCT

