
07-subqueries-functions.md 7/22/2022

1 / 5

Sub-queries and Views

Agenda

* Sub-queries
* Built-in string functions

Sub-queries

A subquery is a SQL query nested inside a larger query. A subquery is used to return data that will be

used in the main query as a condition to further restrict the data to be retrieved.

You can use a sub-query in a SELECT, INSERT, DELETE, or UPDATE statement to perform the following

tasks:

Compare an expression to the result of the query.

Determine if an expression is included in the results of the query.

Check whether the query selects any rows.

A sub-query may occur in :

A SELECT clause

A FROM clause

A WHERE clause

There are a few rules that sub-queries must follow −

Sub-queries must be enclosed within parentheses.

A sub-query can have only one column in the SELECT clause, unless multiple columns are in the main

query for the sub-query to compare its selected columns.

An ORDER BY command cannot be used in a subquery, although the main query can use an ORDER

BY.

Sub-queries that return more than one row can only be used with multiple value operators such as

the IN operator.

The BETWEEN operator cannot be used with a subquery. However, the BETWEEN operator can be

used within the subquery.

Let us consider the students table below

id first_name last_name batch_id iq

1 John Watson 1 120

2 Mycroft Holmes 1 160

3 Moriarty Patel 2 160

07-subqueries-functions.md 7/22/2022

2 / 5

Now, we want all the students who are greater than the average IQ. We can compute the average IQ using

the AVG function but the aggregated value can not be used within the WHERE clause. So, let us try to use a

sub-query.

SELECT
 first_name, last_name, iq
FROM
 students
WHERE
 iq > (SELECT
 AVG(iq)
 FROM
 students);

This would first compute the average IQ of all the students and then compare the average IQ to the IQ of

the current student. Since the sub-query returns a single value, it can be used in the WHERE clause without

any special handling.

Let us modify the original query to see an example where the sub-query returns multiple values. We want all

the students who have IQs greater than the students of batch_id 2;

One way to handle this query is to use the MAX function to get the highest IQ of the batch_id 2 students.

SELECT
 *
FROM
 students
WHERE
 iq > (SELECT
 MAX(iq)
 FROM
 students
 WHERE
 batch_id = 2);

Another way would be to use the ALL keyword. ALL means that the condition will be true only if the

operation is true for all values in the range.

SELECT
 *
FROM
 students
WHERE
 iq > ALL (SELECT
 iq
 FROM
 students

07-subqueries-functions.md 7/22/2022

3 / 5

 WHERE
 batch_id = 2);

Correlated Sub-queries

A correlated subquery (also known as a synchronized subquery) is a subquery (a query nested inside

another query) that uses values from the outer query. Because the subquery may be evaluated once

for each row processed by the outer query, it can be slow.

Correlated subqueries are used for row-by-row processing. Each subquery is executed once for

every row of the outer query.

A correlated subquery is one way of reading every row in a table and comparing values in each row against

related data. It is used whenever a subquery must return a different result or set of results for each

candidate row considered by the main query.

In other words, you can use a correlated subquery to answer a multipart question whose answer depends

on the value in each row processed by the parent statement.

EXISTS operator

The EXISTS operator tests for existence of rows in the results set of the subquery. If a subquery row value is

found the condition is flagged TRUE and the search does not continue in the inner query, and if it is not

found then the condition is flagged FALSE and the search continues in the inner query.

07-subqueries-functions.md 7/22/2022

4 / 5

MySQL functions

MySQL has a number of built-in functions that can be used to perform common tasks. They are divided in

the following categories:

�. Numeric

�. String

�. Date and time

�. Miscellaneous

Numeric functions

Function Description Example

ABS Absolute value SELECT ABS(-1)

CEIL Round up to the nearest integer SELECT CEIL(1.5)

FLOOR Round down to the nearest integer SELECT FLOOR(1.5)

ROUND Round to the given precision SELECT ROUND(1.54, 1)

TRUNCATE Truncate to the given precision SELECT TRUNCATE(1.54, 1)

RAND Generate a random number SELECT RAND()

See more function here.

String functions

Function Description Example

LENGTH Length of the string SELECT LENGTH('Kattapa')

LOWER Convert to lowercase SELECT LOWER('Kattapa')

UPPER Convert to uppercase SELECT UPPER('Kattapa')

LTRIM Trim leading spaces SELECT LTRIM(' Kattapa')

RTRIM Trim trailing spaces SELECT RTRIM('Kattapa ')

TRIM Trim leading and trailing spaces SELECT TRIM(' Kattapa ')

SUBSTR Extract a substring SELECT SUBSTR('Namma Bengaluru', 1, 3)

LEFT Extract left substring SELECT LEFT('Namma Bengaluru', 3)

RIGHT Extract right substring SELECT RIGHT('Namma Bengaluru', 3)

LOCATE Find the position of a substring SELECT LOCATE('Bengaluru', 'Namma Bengaluru')

See more function here.

Date and time functions

https://dev.mysql.com/doc/refman/8.0/en/numeric-functions.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html

07-subqueries-functions.md 7/22/2022

5 / 5

Function Description Example

NOW Current date and time SELECT NOW()

CURDATE Current date SELECT CURDATE()

CURTIME Current time SELECT CURTIME()

YEAR Year of the date SELECT YEAR('2020-01-01')

MONTH Month of the date SELECT MONTH('2020-01-01')

DAY Day of the date SELECT DAY('2020-01-01')

DAYNAME Day of the week SELECT DAYNAME('2020-01-01')

DAYOFWEEK Day of the week SELECT DAYOFWEEK('2020-01-01')

DATE_ADD Add a date SELECT DATE_ADD('2020-01-01', INTERVAL 1 DAY)

DATE_SUB Subtract a date SELECT DATE_SUB('2020-01-01', INTERVAL 1 DAY)

DATEDIFF Difference between two dates SELECT DATEDIFF('2020-01-01', '2020-01-02')

Miscellaneous functions

Function Description Example

IFNULL Replace NULL values SELECT IFNULL(batch_id, 'NO BATCH')

COALESCE
Replace NULL values

recursively
SELECT COALESCE(batch_id, phone, email, first_name)

IF Conditional expression SELECT IF(batch_id = 1, 'YES', 'NO')

CASE Conditional expression
SELECT CASE WHEN batch_id = 1 THEN 'YES' ELSE 'NO'

END

