
09-subqueries-views.md 10/6/2022

1 / 8

Sub-queries, views and query optimization

Sub-queries, views and query optimization

Sub-queries

Correlated Sub-queries

EXISTS operator

Views

CRUD operations

Query Execution

Types of scans

Full table scans

Full Index scan

Index Range scan

Index seek

Some guidelines for optimizing MySQL queries

Practice questions

Sub-queries

A subquery is a SQL query nested inside a larger query. A subquery is used to return data that will be

used in the main query as a condition to further restrict the data to be retrieved.

You can use a sub-query in a SELECT, INSERT, DELETE, or UPDATE statement to perform the following

tasks:

Compare an expression to the result of the query.

Determine if an expression is included in the results of the query.

Check whether the query selects any rows.

A sub-query may occur in :

A SELECT clause

A FROM clause

A WHERE clause

There are a few rules that sub-queries must follow −

Sub-queries must be enclosed within parentheses.

A sub-query can have only one column in the SELECT clause, unless multiple columns are in the main

query for the sub-query to compare its selected columns.

An ORDER BY command cannot be used in a subquery, although the main query can use an ORDER

BY.

Sub-queries that return more than one row can only be used with multiple value operators such as

the IN operator.

The BETWEEN operator cannot be used with a subquery. However, the BETWEEN operator can be

used within the subquery.

Let us consider the students table below

09-subqueries-views.md 10/6/2022

2 / 8

id first_name last_name batch_id iq

1 John Watson 1 120

2 Mycroft Holmes 1 160

3 Moriarty Patel 2 160

Now, we want all the students who are greater than the average IQ. We can compute the average IQ using

the AVG function but the aggregated value can not be used within the WHERE clause. So, let us try to use a

sub-query.

SELECT
 first_name, last_name, iq
FROM
 students
WHERE
 iq > (SELECT
 AVG(iq)
 FROM
 students);

This would first compute the average IQ of all the students and then compare the average IQ to the IQ of

the current student. Since the sub-query returns a single value, it can be used in the WHERE clause without

any special handling.

Let us modify the original query to see an example where the sub-query returns multiple values. We want all

the students who have IQs greater than the students of batch_id 2;

One way to handle this query is to use the MAX function to get the highest IQ of the batch_id 2 students.

SELECT
 *
FROM
 students
WHERE
 iq > (SELECT
 MAX(iq)
 FROM
 students
 WHERE
 batch_id = 2);

Another way would be to use the ALL keyword. ALL means that the condition will be true only if the

operation is true for all values in the range.

SELECT
 *

09-subqueries-views.md 10/6/2022

3 / 8

FROM
 students
WHERE
 iq > ALL (SELECT
 iq
 FROM
 students
 WHERE
 batch_id = 2);

Correlated Sub-queries

A correlated subquery (also known as a synchronized subquery) is a subquery (a query nested inside

another query) that uses values from the outer query. Because the subquery may be evaluated once

for each row processed by the outer query, it can be slow.

Correlated subqueries are used for row-by-row processing. Each subquery is executed once for

every row of the outer query.

A correlated subquery is one way of reading every row in a table and comparing values in each row against

related data. It is used whenever a subquery must return a different result or set of results for each

candidate row considered by the main query.

09-subqueries-views.md 10/6/2022

4 / 8

In other words, you can use a correlated subquery to answer a multipart question whose answer depends

on the value in each row processed by the parent statement.

EXISTS operator

The EXISTS operator tests for existence of rows in the results set of the subquery. If a subquery row value is

found the condition is flagged TRUE and the search does not continue in the inner query, and if it is not

found then the condition is flagged FALSE and the search continues in the inner query.

Views

A view is a virtual table based on the result-set of an SQL statement. A view contains rows and

columns, just like a real table. The fields in a view are fields from one or more real tables in the

database.

We often want to run queries that return a denormalized view of the data. For example, we may want to see

the name of the student along with the name of the batch. We can do this by joining the students and

batches tables.

But, this would require us to write the same query again and again. Creating such a table would be a waste

of space and time. Also, we would have to update the table every time we update the students or

batches table. This is where views come in. Views allow us to create a virtual table that is based on the

result of a query.

Views are created using the CREATE VIEW statement. The syntax is as follows:

CREATE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition;

So in order to create a view that shows the name of the student along with the name of the batch, we can

use the following query:

CREATE VIEW student_batch_view AS
SELECT
 s.first_name, s.last_name, b.name
FROM
 students s
 JOIN
 batches b ON s.batch_id = b.id;

We can now use this view as if it were a table. For example, we can use the SELECT statement to get all the

students in the batches.

09-subqueries-views.md 10/6/2022

5 / 8

SELECT
 *
FROM
 student_batch_view;

Views provide a way to encapsulate complex queries. They can be used to hide the complexity of the query

from the user. They can also be used to restrict access to the data. The following are some of the

advantages of views −

Views can hide complexity - If you have a query that requires joining several tables, or has

complex logic or calculations, you can code all that logic into a view, then select from the view just

like you would a table.

Views can be used as a security mechanism - A view can select certain columns and/or

rows from a table (or tables), and permissions set on the view instead of the underlying tables. This

allows surfacing only the data that a user needs to see.

Views can simplify supporting legacy code - If you need to refactor a table that would

break a lot of code, you can replace the table with a view of the same name. The view provides the

exact same schema as the original table, while the actual schema has changed. This keeps the

legacy code that references the table from breaking, allowing you to change the legacy code at your

leisure.

CRUD operations

Views are majorly used for reading data. However, they can also be used to create, update and delete data.

The following are the CRUD operations that can be performed on views.

UPDATE - Views can be used to update data. However, the view must have all the columns of the

underlying table. The view must also have a WHERE clause that specifies which rows to update. The

UPDATE statement can be used to update the data in the view.

CREATE - New rows can be added to the view and the underlying table using the INSERT statement.

However, the view must have all the columns of the underlying table and the view must have only one

underlying table.

Query Execution

The following steps happen when you execute a query:

�. The client sends the SQL statement to the server.

�. The server checks the query cache. If there s̓ a hit, it returns the stored result from the cache;

otherwise, it passes the SQL statement to the next step.

�. The server parses, preprocesses, and optimizes the SQL into a query execution plan.

�. The query execution engine executes the plan by making calls to the storage engine API.

�. The server sends the result to the client.

09-subqueries-views.md 10/6/2022

6 / 8

To begin, MySQL̓s parser breaks the query into tokens and builds a “parse tree” from them. The parser

uses MySQL̓s SQL grammar to interpret and validate the query. For instance, it ensures that the tokens in

the query are valid and in the proper order, and it checks for mistakes such as quoted strings that arenʼt

terminated.

The preprocessor then checks the resulting parse tree for additional semantics that the parser canʼt

resolve. For example, it checks that tables and columns exist, and it resolves names and aliases to ensure

that column references arenʼt ambiguous.

Next, the preprocessor checks privileges. This is normally very fast unless your server has large numbers of

privileges.

MySQL uses a cost-based optimizer, which means it tries to predict the cost of various execution plans and

choose the least expensive. The unit of cost is a single random four-kilobyte data page read.

09-subqueries-views.md 10/6/2022

7 / 8

Types of scans

Full table scans

A full table scan (also known as a sequential scan) is a scan made on a database where each row of the

table is read in a sequential (serial) order and the columns encountered are checked for the validity of a

condition. Full table scans are usually the slowest method of scanning a table due to the heavy amount of

I/O reads required from the disk which consists of multiple seeks as well as costly disk to memory transfers.

Full Index scan

If your table has a clustered index and you are firing a query that needs all or most of the rows i.e. query

without WHERE or HAVING clause, then it uses an index scan. It works similar to the table scan, during the

query optimization process, the query optimizer takes a look at the available index and chooses the best

one, based on information provided in your joins and where clause, along with the statistical information

database keeps.

The main difference between a full table scan and an index scan is that because data is sorted in the index

tree, the query engine knows when it has reached the end of the current it is looking for. It can then send

the query, or move on to the next range of data as necessary

Index Range scan

Index range scan is a common operation for accessing selective data. It can be bounded (bounded on both

sides) or unbounded (on one or both sides). Data is returned in the ascending order of index columns.

Multiple rows with identical values are sorted.

Index seek

When your search criterion matches an index well enough that the index can navigate directly to a particular

point in your data, that's called an index seek. It is the fastest way to retrieve data in a database. The index

seeks are also a great sign that your indexes are being properly used.

This happens when you specify a condition in WHERE clause like searching an employee by id or name if

you have a respective index.

Some guidelines for optimizing MySQL queries

Avoid using functions in predicates

SELECT * FROM students where upper(phone) = '123';

Because of the UPPER() function, the database doesnʼt utilize the index on COL1. If there isnʼt any

way to avoid that function in SQL, you will have to create a new function-based index or have to

generate custom columns in the database to improve performance.

Avoid using a wildcard (%) at the beginning of a predicate

09-subqueries-views.md 10/6/2022

8 / 8

SELECT * FROM students where phone like '%123';

The wildcard causes a full table scan.

Avoid unnecessary columns in SELECT clause Instead of using ‘SELECT *,̓ always specify columns in

the SELECT clause to improve MySQL performance. Because unnecessary columns cause additional

load on the database, slowing down its performance as well whole systematic process.

Pagination

Avoid SELECT DISTINCT

Practice questions

Sub-queries - I

Sub-queries - II

Sub-queries - III

Sub-queries - IV

Sub-queries - V

Sub-queries - VI

https://leetcode.com/problems/customers-who-never-order/
https://leetcode.com/problems/sales-person/
https://leetcode.com/problems/consecutive-available-seats/
https://leetcode.com/problems/sales-analysis-ii/
https://leetcode.com/problems/students-with-invalid-departments/
https://leetcode.com/problems/customer-who-visited-but-did-not-make-any-transactions/

