03-normalisation-sql.md 9/15/2022

Normalisation and SQL CRUD operations

¢ Normalisation and SQL CRUD operations
o Key Terms
®» Functional Dependencies
= Data Normalisation
o Data Anomalies
= [nsertion Anomalies
= Deletion Anomalies
m Updation Anomalies
o Functional Dependencies
o Data Normalisation
= INF
= Redundant columns
m Redundant rows
= Separate Mapping Table
= 2NF
= 3NF
m Boyce-Codd Normal Form (BCNF)
o SQL Commands
= DDL
= DML
= DCL
= TCL
o CRUD with SQL
= Create rows
m Examples
= Read rows
m Examples

Key Terms
Functional Dependencies

Functional Dependency is when one attribute determines another attribute in a DBMS
Data Normalisation

the process of splitting relations into well-structured relations that allow users to insert, delete, and
update tuples without introducing database inconsistencies

Data Anomalies
An anomaly is something that is unusual or unexpected; an abnormality

A very common source for issues in the database is redundancy. Apart from storage issues, having the
same value present in multiple rows can lead to inconsistent data. Have a look at the following
1/11

03-normalisation-sql.md 9/15/2022

table.

ID NAME EMAIL BATCH_ID BATCH_NAME

Let us assume that the above table is the only table in the database. The student and batch entities are
tightly coupled. What are some issues that can be caused by this?

e How do we create a new batch without students?

¢ How do we create a new student without a batch?

e What data do we lose if we delete a student?

¢ What happens if we modify a batch name but miss a record?

Anomalies are avoided by the process of normalisation The above issues or anomalies can be categorised
into the following categories:

Insertion Anomalies
The inability to insert a new tuple into a table due to missing data is known as insertion anomaly.
An insertion anomaly occurs when data cannot be inserted into a database due to other missing data

This is most common for fields where a foreign key must not be NULL, but lacks the appropriate data
Adding a student without a batch is not possible in the above schema is a batch_id is required. Whereas
creating a new batch without students would require multiple null values and special handling.

Deletion Anomalies

A deletion anomaly occurs when data is unintentionally lost due to the deletion of other data A
deletion anomaly is the unintended loss of data due to deletion of other data

ID NAME EMAIL BATCH_ID BATCH_NAME
1 John Watson j@sherlock.ed 1 Sherlock Season 6
2 Mary Watson m@sherlock.ed 1 Sherlock Season 6
3 Kilvish kil@vi.sh 2 Shaktimaan
In the above table, just is associated with the batch . Now, if we delete

from the database, we lose the data associated with the batch. This results in database inconsistencies and
is an example of how combining information that does not really belong together into one table can cause
problems

Updation Anomalies

An update anomaly occurs when data is only partially updated in a database An update anomaly is a
data inconsistency that results from data redundancy and a partial update

ID NAME EMAIL BATCH_ID BATCH_NAME

1 John Watson j@sherlock.ed 1 Sherlock Season 6

2/11

03-normalisation-sql.md 9/15/2022

ID NAME EMAIL BATCH_ID BATCH_NAME
2 Mary Watson m@sherlock.ed 1 Sherlock Season 6
3 Kilvish kil@vi.sh 2 Shaktimaan
4 Mycroft Holmes brother@sherlock.ed 1 Sherlock Season 6
In the above table, we have three students associated with the batch . If we have to

update the batch name, each row will have to be updated due to redundancy. This adds an overhead and a
likely source of data inconsistency. If our developer or query misses a record, the database will be in an
inconsistent state.

Functional Dependencies

a dependency FD: X = Y means that the values of Y are determined by the values of X. Two tuples
sharing the same values of X will necessarily have the same values of Y.

¢ A functional dependency is a constraint that specifies the relationship between two sets of attributes
where one set can accurately determine the value of other sets.

¢ |tis denoted as , Where X is a set of attributes that is capable of determining the value of Y

¢ The attribute set on the left side of the arrow, X is called Determinant, while on the right side, Y is
called the Dependent

Suppose one is designing a system to track vehicles and the capacity of their engines. Each vehicle
has a unigue vehicle identification number (VIN). One would write VIN - EngineCapacity because it
would be inappropriate for a vehicle's engine to have more than one capacity. On the other hand,
EngineCapacity - VIN is incorrect because there could be many vehicles with the same engine
capacity

ID NAME EMAIL BATCH_ID BATCH_NAME

Using the above schema, the following observations can be made:

. can be used to derive and . Hence,
o]
(o]
. can be used to derive
o
¢ Since an is a unique identifier, it can be used to derive 1D and

o

o

. can also be used to derive

o

Figure out the functional dependencies for the below table

MENTOR_ID STUDENT_ID SESSION_ID RATING FEEDBACK

1 1 1 5 Very Good

3/11

03-normalisation-sql.md 9/15/2022

MENTOR_ID STUDENT_ID SESSION_ID RATING FEEDBACK

1 2 1 4 Good
2 3 1 3 Average
1 1 2 4 Good

Data Normalisation

the process of structuring a relational database in accordance with a series of so-called normal
forms in order to reduce data redundancy and improve data integrity. Normalization entails
organizing the columns (attributes) and tables (relations) of a database to ensure that their
dependencies are properly enforced by database integrity constraints

The goal of normalisation is to produce a set of tables that

¢ |Is a faithful model of the enterprise

¢ Is highly flexible

e Reduces redundancy-saves space and reduces inconsistency in data
¢ |s free of update, insertion and deletion anomalies

Following are the various normal forms:
1MNF 2ZNF 3INF 4MNF SNF

Decompaosition of Relation

[

c

2 Eliminate Eliminate Partial Eliminate Eliminate Eliminate

5 Repeating Functional Transitive Multi-values Join

5 Groups Dependency Dependency Dependency Dependency
INF

¢ A relation will be INF if it contains an atomic value.
o [t states that an attribute of a table cannot hold multiple values. It must hold only single-valued

attribute.
¢ First normal form disallows the multi-valued attribute, composite attribute, and their combinations.

ID NAME EMAIL PHONE_NUMBERS

1 Tantia Tope tantia@rani.bai [123456789, 987654321]

4/11

03-normalisation-sql.md 9/15/2022

ID NAME EMAIL PHONE_NUMBERS

2 Kilvish kil@vi.sh [987654321,123456789]

3 John Watson i.am@sherlock.ed [123456789, 987654321]
The above table is not 1NF because it contains a multi-valued attribute i.e. phone numbers.

Redundant columns

NAME EMAIL PHONE_NUMBER_01 PHONE_NUMBER_02
Tantia Tope tantia@rani.bai 123456789 987654321
Kilvish kil@vi.sh 987654321 123456789
John Watson i.am@sherlock.ed 123456789 987654321
Cons -

o Wasteful if all rows have mostly one phone number

e Hard to determine upper bound of number of phone numbers

e Querying is not efficient since multiple columns needs to be queried
e Multiple indexes

Redundant rows

ID NAME EMAIL PHONE_NUMBERS
1 Tantia Tope tantia@rani.bai 123456789
1 Tantia Tope tantia@rani.bai 987654321
2 Kilvish kil@vi.sh 123456789
2 Kilvish kil@vi.sh 987654321

3 John Watson i.am@sherlock.ed 987654321

3 John Watson i.am@sherlock.ed 123456789
What will be primary key in the above table?
Cons -

¢ A lot of redundant rows which can lead to anomalies
e Primary key needs to be altered

Separate Mapping Table

The two solutions above are not ideal due to the large amount of redundant data. In order to properly
convert the above table to 1NF, we need to create a separate table that maps the redundant data to the
primary key. Hence, a table is created with and columns.

5/11

03-normalisation-sql.md 9/15/2022

There are multiple rows for each student and the ID is used to map the redundant data. This minimises the
amount of redundant data.

STUDENT

int id

string name

string email

PHONE_NUMBER

int student_id

string | phone_number

2NF

¢ In the 2NF, relational must be in 1NF.
¢ There should be no partial dependencies.
e Every non candidate-key attribute must depend on the whole candidate key, not just part of it

ID NAME BATCH_ID BATCH_NAME PSP

Listing out the dependencies for the above table:

. and can be used to derive

o

. can be used to derive

In the first dependency, and can determine a non-candiate key attribute. However, in the
second dependency just can determine a non-candidate key. This is an example of a partial
dependency and hence violates 2NF.

The above table can be normalised by creating a separate table for batch information.

6/11

03-normalisation-sql.md 9/15/2022

STUDENT
int id
int batch_id

string | name

float psp
joins
BATCH
int batch_id

string | name

3NF

¢ |n the 3NF, relational must be in 2NF.
¢ |t should also not contain any transitive dependencies.

ID NAME BATCH_ID BATCH_NAME

Listing out the dependencies for the above table:

It can be observed in the last three dependencies that 1D can determine that can be used to

determine i.e. . This is an example of a transitive
dependency and hence violates 3NF.

A relation is in third normal form if it holds atleast one of the following conditions for every non-trivial
function dependency X = Y.

e X s a super key.
¢ Y is a prime attribute, i.e., each element of Y is part of some candidate key.

ID NAME PHONE BATCH_ID BATCH_NAME

In the above table,

7/11

03-normalisation-sql.md 9/15/2022

Do any of the above violate 3NF? NO Since 1D and are both candidate keys. What about
?

Yes, this violates 3NF since is not a super key and is not a prime attribute.

Again, the above table can be normalised by creating a separate table for batch information.

STUDENT
int id
int batch_id

string | name

int phone
joins
BATCH
int batch_id

string | name

Boyce-Codd Normal Form (BCNF)

e Atable is in BCNF if every functional dependency X = Y, X is the primary key of the table.

Looking at the normalised table from 3NF

ID NAME PHONE BATCH_ID

We can list the following dependencies for the above table:

It can be clearly seen that the last dependency violates BCNF as phone is not a primary key. The above
table can be normalised by creating a separate table for phone information.

8/11

03-normalisation-sql.md

STUDENT
int id
int batch_id
string | name
joins has
BATCH PHONE_NUMBER
int batch_id int student_id
string | name int | phone_number
SQL Commands
SQL
Commands
DDL DML DCL TCL
CREATE SELECT GRANT COMMIT
ALTER INSERT REVOKE ROLLEBACK
DROP UPDATE SAVEPOINT
TRUNCATE DELETE SET TRANSACTION
COMMENT MERGE
REMAME CALL

DDL

EXPLAIN PLAMN

LOCK TABLE

9/15/2022

DDL is short name of Data Definition Language, which deals with database schemas and descriptions, of

how the data should reside in the database.

e CREATE - to create database and its objects like (table, index, views, store procedure, function and

triggers).

e ALTER - alters the structure of the existing database.

o DROP - delete objects from the database.
e TRUNCATE - remove all records from a table; also, all spaces allocated for the records are removed.

e COMMENT - add comments to the data dictionary.

9/11

03-normalisation-sql.md 9/15/2022

¢ RENAME - rename an object.
DML

DML is short name of Data Manipulation Language which deals with data manipulation, and includes most
common SQL statements such SELECT, INSERT, UPDATE, DELETE etc, and it is used to store, modify,
retrieve, delete and update data in database.

e SELECT - retrieve data from one or more tables.

¢ INSERT - insert data into a table.

e UPDATE - updates existing data within a table.

o DELETE - delete all records from a table.

o MERGE - UPSERT operation (insert or update)

e CALL - call a PL/SQL or Java subprogram.

e EXPLAIN PLAN - interpretation of the data access path.
e LOCK TABLE - concurrency control.

DCL

DCL is short name of Data Control Language which includes commands such as GRANT, and mostly
concerned with rights, permissions and other controls of the database system.

e GRANT - allow users access privileges to database.
e REVOKE - withdraw users access privileges given by using the GRANT command.

TCL

TCL is short name of Transaction Control Language which deals with transaction within a database.

e COMMIT - commits a transaction.

e ROLLBACK - rollback a transaction in case of any error occurs.

e SAVEPOINT - a point inside a transaction that allows rollback state to what it was at the time of the
savepoint.

e SET TRANSACTION - specify characteristics for the transaction.

CRUD with SQL
Create rows

Keyword: Syntax:

Examples

1. Insert a row with all columns

INSERT INTO students VALUES (1, 'Tantia', 'Tope', 't@t.com',
'1234567890"', 1);

10/11

03-normalisation-sql.md 9/15/2022

2. Insert a row with some columns

INSERT INTO students (first_name, last_name) VALUES ('Tantia',
'Tope');

Read rows

Keyword: Syntax:

Examples

1. Get all rows

SELECT * FROM students;

2. Get certain fields from all rows

SELECT first_name, last_name FROM students;

3. Filter rows by condition

SELECT * FROM students WHERE first_name = 'Tantia';

4. Order rows by column

SELECT * FROM students ORDER BY first_name ASC;

5. Limit number of rows

SELECT * FROM students LIMIT 10;

11/11

