
04-sockets-primer.md 8/19/2022

1 / 6

Socket programming with Python

Agenda

Understanding sockets

Types of sockets

Local and remote addresses

Ephemeral ports

Creating an echo client-server

Single connection

Multi connection

Multi-threaded

Key terms

Socket

A network socket is a software structure within a network node of a computer network that serves as

an endpoint for sending and receiving data across the network

Ephemeral port

A port that is dynamically allocated by the system and is used for a short period of time

What are sockets?

Sockets and the socket API are used to send messages across a network. They provide a form of

inter-process communication (IPC).

Sockets are nothing but interfaces provided to developers transfer data over the network. Any

message sent from one process to another, must go through the underlying layers. The software interface

between these layers is called a socket. Socket programming is a way of connecting two nodes on a

network to communicate with each other.



04-sockets-primer.md 8/19/2022

2 / 6

One socket(node) listens on a particular port at an IP, while the other socket reaches out to the other to

form a connection. The server forms the listener socket while the client reaches out to the server.

As developers, we have control over everything that happens before the message is sent through the

socket, and everything that happens after the message is received from a socket. The only control

we have over the transport layer is maybe choosing the protocol (TCP, UDP…) or some parameters.

A socket is an endpoint instance defined by an IP address and a port in the context of either a

particular connection or the listening state

A socket comprises 5 things:

�. Local address

�. Local port

�. Remote address

�. Remote port

�. Protocol

Types of sockets

�. Stream socket: a socket that is used to send and receive data using TCP in a connection-oriented

manner.

�. Datagram socket: Datagram sockets are used to support User Datagram Protocol (UDP)

applications that rely on connectionless data transfer. Each packet sent via datagram sockets is

individually addressed and routed but takes no measure to ensure order or arrival. Datagram sockets

are considered to be “unreliable” transport services.



04-sockets-primer.md 8/19/2022

3 / 6

�. Raw socket: Raw sockets allow the send/receive of Internet Protocol packets from the network layer

without any specific constraint on protocol (TCP, UDP, etc.). As such, header specifications are made

at the application layer when sending and much of the encapsulation is left up to application

developers.

Life cycle of a socket

Server

�. Create a socket

�. Bind the socket to a local address and port



04-sockets-primer.md 8/19/2022

4 / 6

�. Start listening for incoming connections

�. Accept incoming connections

�. Receive data

�. Send data

�. Close the socket when done

Client

�. Create a socket

�. Connect to a remote address and port

�. Send data

�. Receive data

�. Close the socket when done

Ephemeral ports

The server port is one that cannot be instantly changed since it is being used by multiple clients. However,

the client port is one whose value is not of importance. As long as the client port is present, the connection

and data transmission will be successful. So to avoid the overhead of binding a socket to the port, the

system will automatically allocate a port for the client. This is a short-lived port and is hence known as an

ephemeral port.

Socket programming with Python

Creating a socket

import socket 
 
socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

Here, we create a socket object with the address family AF_INET and the socket type SOCK_STREAM. This
means that the socket will use the IPv4 protocol and will be a TCP socket.

If we want to use the UDP protocol, we would use the socket type SOCK_DGRAM.

Binding a socket to a local address and port

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
sock.bind(('127.0.0.1', 5000)) 

Listening for incoming connections

sock.listen(1) 



04-sockets-primer.md 8/19/2022

5 / 6

The parameter 1 specifies the maximum number of queued connections. It specifies the number of

unaccepted connections that the system will allow before refusing new connections. Starting in Python 3.5,

it s̓ optional. If not specified, a default backlog value is chosen

Find out more about the parameter here.

Accepting incoming connections

conn, addr = sock.accept() 

The accept method blocks execution and waits for an incoming connection. When a client connects, it

returns a new socket object representing the connection and a tuple holding the address of the client

The conn variable is the new connection (socket) object and the addr variable is the address of the client.

We can use the conn variable to send and receive data. The difference between the conn and sock
variables is that sock is the listening socket and conn is the new connection that has both local and remote

addresses.

Connecting to a remote address and port

sock.connect(('127.0.0.1', 5000)) 

The connect method is used by the client to connect to the server.

Receiving and sending data

data = conn.recv(1024) 

The recv method is used to receive data from the socket. The parameter specifies the maximum number of

bytes to be received.

conn.sendall(b'Hello World') 

Unlike send, this method continues to send data from bytes until either all data has been sent or an error

occurs. None is returned on success.

Closing the socket

sock.close() 

https://tangentsoft.net/wskfaq/advanced.html#backlog


04-sockets-primer.md 8/19/2022

6 / 6

Further reading

Detailed Socket programming with Python

Creating a port scanner with Python

Non-blocking sockets

https://realpython.com/python-sockets/#background
https://www.thepythoncode.com/article/make-port-scanner-python
https://docs.python.org/3/howto/sockets.html#non-blocking-sockets

