
01-database-fundamentals.md 9/10/2022

1 / 12

Database and the relational model

Agenda

What is a database?

Why do we use DBMS?

What are the different types of databases?

What is a relational database?

Key terms

Data

Information or facts and statistics collected together for reference or analysis.

Information that has been translated into a form that is efficient for movement or processing

Examples

Runs scored by Virat Kohli

Temperature in Bangalore

Your food orders from Swiggy

Students in a class

Database

an organized collection of inter-related data that models some aspect of the real-world

a set of related data and the way it is organized

Examples

Scorecards of all cricket matches

Weather conditions of all cities in the world

All orders placed on Swiggy

01-database-fundamentals.md 9/10/2022

2 / 12

Students, mentors and batches

Database Management System

software system that enables users to define, create, maintain and control access to the database

the software that manages a database

Examples

MySQL

PostgreSQL

MongoDB

Oracle

Relational Database

An approach to managing data using a structure and language consistent with first-order predicate

logic, first described where all data is represented in terms of tuples, grouped into relations. A

database organized in terms of the relational model is a relational database.

Non-relational Database

A non-relational database is a database that does not use the tabular schema of rows and columns

found in most traditional database systems. Instead, non-relational databases use a storage model

that is optimized for the specific requirements of the type of data being stored

Non-relational databases (often called NoSQL databases) are different from traditional relational

databases in that they store their data in a non-tabular form. Instead, non-relational databases might

be based on data structures like documents. A document can be highly detailed while containing a

range of different types of information in different formats

Primary Key

a specific choice of a minimal set of attributes (columns) that uniquely specify a tuple (row) in a

relation (table)

Foreign Key

A foreign key is a set of attributes in a table that refers to the primary key of another table

Brute Force - Files

Let us say it is 1960, and you haven't heard of databases. Scaler is early on the scene, and they want to

store the following data points

Student (name, age, address, phone, email, etc.)

Mentor (name, age, address, phone, email, etc.)

Batch (name, mentor, start date, type, etc.)

What is the simplest way we can store this data?

01-database-fundamentals.md 9/10/2022

3 / 12

Files

Store each entity as a separate CSV file

students.csv

mentors.csv

batches.csv

Sample students.csv

Name,Email,Phone,Age,Address
Tantia Tope,tantia@rani.bai,123456789,20,Jhansi
Kilvish,kil@vi.sh,987654321,21,Andhera
John Watson,i.am@sherlock.ed,123456789,30,221B Baker Street

or

Name Email Phone Age Address

Tantia Tope tantia@rani.bai 123456789 20 Jhansi

Kilvish kil@vi.sh 987654321 21 Andhera

John Watson i.am@sherlock.ed 123456789 30 221B Baker Street

Recap

Store each entity as a separate CSV file

The first row of each file is the header

Header contains the attributes of the entity

Each row except the header contains the data of the entity

To read a record, the file needs to be parsed every time

Issues - Can we use files for a real application?

First, let us see how we can interact with a file. The following code will read the file and print name of the

students.

Read file and print out name of students
with open(STUDENTS_FILE, "r") as file:
 for line in file:
 name = line.split(",")[0]
 print(name)

Can you spot an error in the output or the code?

Skipping the header row.

01-database-fundamentals.md 9/10/2022

4 / 12

Read file and print just names of students
with open(STUDENTS_FILE, "r") as file:
 for index, line, in enumerate(file):
 if index == 0:
 continue
 name = line.split(",")[0]
 print(name)

How can I search for all the users whose age is less than 25?

Read the file

Iterate through each row

Parse the row and check if the age is less than 25

Print the name of the user if true

Read file and only print users with age less than 25
with open(STUDENTS_FILE, "r") as file:
 for index, line, in enumerate(file):
 if index == 0:
 continue
 name = line.split(",")[0]
 age = line.split(",")[3]
 if int(age) < 25:
 print(name, age)

Problems

Not scalable - Inefficient

Worst case complexity is O(n)

We need to read the file every time we want to search for a user

We need to go through the file every time we want to search for a user

Data integrity

What if there are duplicates in the file?

What happens if we replace the age of a student with a garbage value?

What happens if we delete a mentor that is part of a batch?

Concurrency

What if two users update and save the file at the same time? Which value is saved?

Security

Anyone with access to file system be able to read the file and even update it.

Fault tolerance

What happens if computer crashes while you are updating the file?

Recap

Files are a simple way to store data

To read even a single record, we need to parse the file every time

01-database-fundamentals.md 9/10/2022

5 / 12

Files are not scalable, secure or fault-tolerant

When should we use a file?

Static data - Not frequently updated

Does not require complex operations like searching, updating, deleting, etc.

Small size of data

Fewer requests for the data - Less throughput

Configurations, log files, mock data, etc.

Sequential vs Random Access

DBMS

A database management systems aims to provide a single interface to a set of database services, that

overcome the limitations of storing data in files.

Codd proposed the following functions and services a fully-fledged general purpose DBMS should

provide

Data storage, retrieval and update

User accessible catalog or data dictionary describing the metadata

Support for transactions and concurrency

Facilities for recovering the database should it become damaged

Support for authorization of access and update of data

Access support from remote locations

Enforcing constraints to ensure data in the database abides by certain rules

Types of DBMS

Relational

Non-relational (NoSQL)

01-database-fundamentals.md 9/10/2022

6 / 12

Columnar

stores data tables by column rather than by row for more efficient access to data

when only querying a subset of columns

MariaDB, InfluxDB

Graph-based

graph structures with nodes, edges, and properties to represent and store

information

Neo4j

Key-value

uses a simple key-value method to store data where a key serves as a unique

identifier.

DynamoDB, Redis, etc.

Document-oriented

Extension of key-value database that stores data in a more complex structure which

allows for optimisations for querying and storing data.

MongoDB, CouchDB, etc.

Time series

to store and retrieve data records that are part of a “time series,” which is a set of

data points that are associated with timestamps. The timestamps provide a

critical context for each of the data points in how they are related to others.

InfluxDB, TimeScaleDB, Prometheus, etc.

Relational DBMS

Using a database in an application leads to extra or boilerplate code. You might see the same piece of code

across applications. To reduce this duplication and standardise the code, various data models were

proposed.

The most popular being the relational model.

The relational model (RM) is an approach to managing data using a structure and language

consistent with first-order predicate logic, where all data is represented in terms of tuples, grouped

into relations

This relational model has three key points

Store database in simple data structures (relations).

Access data through high-level language.

Physical storage left up to implementation.

Relevance to DBMS

SQL Query

01-database-fundamentals.md 9/10/2022

7 / 12

SELECT * FROM USERS WHERE age > 25;

Set operation - Subset

SQL Query

SELECT * FROM USERS WHERE age > 25 and age < 30;

Set operation - Subset

01-database-fundamentals.md 9/10/2022

8 / 12

Relational Model

Main features of the relational model are:

Relations - Tables -Represent data as a collection of relations or tables

Attributes - Columns - Each entry in a relation can describe multiple values that are grouped as an

attribute

Tuples - Rows - Represent individual data points across multiple attributes

01-database-fundamentals.md 9/10/2022

9 / 12

Degree - Number of attributes in a relation

Student (name, age, address, phone, email)

Degree - 5

Cardinality - Number of tuples

Look at our users file above

It has three rows and hence cardinality is 3

NULL - For a given tuple, the attribute is undefined.

Properties

Uniqueness

Each tuple is unique

Each attribute is unique

Unordered

Tuples are not ordered

Attributes are not ordered

Uniform data type - Every value in a column is of the same data type

Atomicity - Each attribute in each tuple within a relation should consist of a single value and not

allow multivalued structures of the kind

Keys

Keys are used to

uniquely identify a tuple in a relation.

describe relationships between relations.

How can you uniquely identify a student in the students relation?

Student (name, age, address, phone, email)

01-database-fundamentals.md 9/10/2022

10 / 12

Name

A name might not be unique

Phone or Email

Each student will have a unique phone or email address

Super keys

A set of attributes that uniquely identify a tuple in a relation.

For our student relation Student (name, age, address, phone, email), following are some super
keys:

{id, name}
{id, name, phone}
{id, name, email}
{id, name, email, phone}
{id, name, email, phone, age, address}
{id}

Candidate keys

A minimal set of attributes that uniquely identify a tuple in a relation.

For example {id, name, email, phone} is a super key but is it a candidate key?

No, since you can remove phone or any other attribute set, but it will still uniquely identify a tuple.

A set of candidate keys for our student relation

id

name

email

Primary Keys

a specific choice of a minimal set of attributes (columns) that uniquely specify a tuple (row) in a

relation (table)

a primary key is a choice of candidate key (a minimal superkey); any other candidate key is an

alternate key.

Each relation can only have one primary key

Composite Keys

Sometime you want to use multiple attributes to uniquely identify a tuple. For example, you might want to

use a combination of name and phone number to uniquely identify a student.

Composite keys are used in mapping tables. For instance, you might want to have a relation for student

feedback. You could use student_id and batch_id for uniquely identifying a tuple.

01-database-fundamentals.md 9/10/2022

11 / 12

Foreign Keys

A Foreign Key is a database key that is used to link two tables together A foreign key is a set of

attributes in a table that refers to the primary key of another table

Imagine adding a batch to a student. You could add all the column for a batch in the student relation.

Name Email Phone Age Address Batch Name Batch Start Date Type

Problem with this solution

Duplication - All the columns from the batch relation are duplicated

Integrity - What if the original relation is duplicated?

Can we just reference the original relation?

Name Email Phone Age Address Batch Id

Some queries to get you started

Create the students relation

CREATE TABLE `students` (
 `id` int NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 `age` int DEFAULT NULL,
 `phone` int DEFAULT NULL,
 `email` varchar(255) NOT NULL,
 `address` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`);
)

Create the mentors relation

CREATE TABLE `mentors` (
 `id` int NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 `age` int DEFAULT NULL,
 `phone` int DEFAULT NULL,
 `address` varchar(255) DEFAULT NULL,
 `email` varchar(255) NOT NULL,
 PRIMARY KEY (`id`)
);

Create the batches relation

01-database-fundamentals.md 9/10/2022

12 / 12

CREATE TABLE `batches` (
 `id` int NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 `start_date` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `type` varchar(255) NOT NULL,
 `mentor_id` int NOT NULL,
 PRIMARY KEY (`id`),
 KEY `mentor_id` (`mentor_id`),
 CONSTRAINT `batches_ibfk_1` FOREIGN KEY (`mentor_id`) REFERENCES
`mentors` (`id`)
);

