
Generics in Python
• Generics in Python

◦ What Are Generics?
◦ Why Are Generics Useful?
◦ Implementing Generics in Python:

▪ 1. Function Generics
▪ 2. Class Generics
▪ 3. Generic Functions with Constraints
▪ 4. Generic Classes with Constraints

◦ Conclusion

What Are Generics?
Generics, also known as parameterized types, are a programming language feature that
allows the creation of functions, classes, and data structures that operate on types without
specifying them explicitly. They enable the creation of reusable and type-safe code by letting
you write functions and classes that work with any data type.

Generics provide a way to design components and algorithms in a way that makes them
independent of the specific types they operate on, offering flexibility and reusability.

Why Are Generics Useful?
1. Code Reusability: Generics allow you to write functions and classes that can

work with different data types. This promotes code reuse and reduces
redundancy.

2. Type Safety: By using generics, you can catch type-related errors at compile-
time rather than runtime. This enhances code safety and readability.

3. Abstraction: Generics provide a level of abstraction, allowing you to design
components without committing to specific data types. This flexibility is especially
valuable in building libraries and frameworks.

4. Performance: Generics can lead to more efficient code as the compiler can
generate specialized versions of functions or classes for each data type,

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

optimizing performance.

Implementing Generics in Python:

1. Function Generics
In Python, you can implement generics using type hints and the typing module. The
typing module provides a TypeVar class for creating generic types.

from typing import TypeVar

T = TypeVar('T')

def identity(value: T) -> T:

return value

Usage

result_str = identity("Hello, generics!")

result_int = identity(42)

In this example, the identity function takes a generic type T as a parameter and returns a
value of the same type. The type hint -> T indicates the return type.

2. Class Generics
You can apply generics to classes as well, making them more versatile. Here's an example of
a generic Stack class:

from typing import TypeVar, List

T = TypeVar('T')

class Stack[T]:

def __init__(self):

self.items: List[T] = []

def push(self, item: T):

self.items.append(item)

def pop(self) -> T:

return self.items.pop()

Usage

stack_str = Stack[str]()

stack_str.push("Python")

result_str = stack_str.pop()

stack_int = Stack[int]()

stack_int.push(42)

result_int = stack_int.pop()

In this example, the Stack class is generic and can be instantiated with different types (str
and int in this case).

3. Generic Functions with Constraints
You can impose constraints on generic types using the TypeVar class's bound parameter.
This allows you to restrict the types that can be used with generics.

from typing import TypeVar, List

T = TypeVar('T', int, float)

def add_elements(items: List[T]) -> T:

return sum(items)

Usage

result_int = add_elements([1, 2, 3])

result_float = add_elements([1.1, 2.2, 3.3])

Here, the TypeVar('T', int, float) indicates that the generic type T must be either int

or float .

4. Generic Classes with Constraints
You can apply constraints to generic classes in a similar way. Here's an example of a generic
MathOperation class:

from typing import TypeVar, Union

T = TypeVar('T', int, float)

class MathOperation:

def __init__(self, value: T):

self.value = value

def add(self, other: T) -> T:

return self.value + other

Usage

math_int = MathOperation(5)

result_int = math_int.add(3)

math_float = MathOperation(2.5)

result_float = math_float.add(1.5)

In this example, the generic type T is constrained to be either int or float .

Conclusion
Generics in Python provide a powerful mechanism for creating flexible and reusable code that
works with various data types. By using type hints and the typing module, you can
implement generic functions and classes that enhance code readability, maintainability, and
type safety. Generics allow Python developers to write more abstract and versatile code,
contributing to the overall quality and efficiency of their programs.

	Generics in Python
	What Are Generics?
	Why Are Generics Useful?
	Implementing Generics in Python:
	1. Function Generics
	2. Class Generics
	3. Generic Functions with Constraints
	4. Generic Classes with Constraints

	Conclusion

