
Splitwise - Command Line Interface
• Splitwise - Command Line Interface

◦ Command Line Interface
▪ Creating a CLI with Django
▪ Passing Arguments to a Command
▪ Creating a User
▪ Creating a Group
▪ Adding a User to a Group

◦ Conclusion

Command Line Interface
A command line interface is a way of interacting with a computer program where the user
issues commands to the program in the form of successive lines of text (command lines). The
program responds with output to the command lines issued by the user.

CLI is a very common way of interacting with programs. For example, the git program is a
CLI program. It has multiple commands like git add , git commit , git push etc. Each of
these commands takes in some arguments and performs some action.

A CLI is different from an API in that an API is a way for programs to interact with each other,
whereas a CLI is a way for humans to interact with programs. Also, API calls are usually made
over the network, whereas CLI commands are usually made on the same machine.

Creating a CLI with Django
You can create a CLI with Django by using the django-admin command. This command is
used to create a new Django project. You can create a new Django project by running the
following command:

$ django-admin startproject splitwise

We'll start with creating a command to register a new user. We'll call this command
register .

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

To create a new command, you can use the BaseCommand class from
django.core.management.base . This class is the base class for all commands in Django.

You can create a new command by creating a new class that inherits from BaseCommand and
then override the handle method to implement the logic for your command.

splitwise/management/commands/register.py

from django.core.management.base import BaseCommand

class Command(BaseCommand):

help = 'Register a new user'

def handle(self, *args, **options):

self.stdout.write(self.style.SUCCESS('Register!'))

To register this command with Django, you need to create a management/commands directory
inside your app and then create a file with the name of your command inside this directory. In
this case, we created a register.py file inside the management/commands directory.

Now, you can run this command using the manage.py command:

$ python manage.py register

Register!

Passing Arguments to a Command
You can also pass arguments to your command. For example, you can pass the username,
phone number and password of the user you want to register. You can do this by overriding
the add_arguments method of the BaseCommand class.

splitwise/management/commands/register.py

from django.core.management.base import BaseCommand

class Command(BaseCommand):

help = 'Register a new user'

def add_arguments(self, parser):

parser.add_argument('username', type=str)

parser.add_argument('password', type=str)

parser.add_argument('phone', type=str)

def handle(self, *args, **options):

username = options['username']

password = options['password']

phone = options['phone']

self.stdout.write(self.style.SUCCESS(f'Register {username}!'))

Now, you can run this command by passing the username and password as arguments:

$ python manage.py register Tantia Tope

Register Tantia!

Creating a User
Now that we have the username and password of the user, we can create a new user in the
database. Let's create the user model first.

splitwise/models.py

from django.db import models

class User(models.Model):

username = models.CharField(max_length=100)

phone = models.CharField(max_length=100)

password = models.CharField(max_length=100)

Now you can use the User model to create a new user in the database.

splitwise/management/commands/register.py

from django.core.management.base import BaseCommand

from splitwise.models import User

class Command(BaseCommand):

help = 'Register a new user'

def add_arguments(self, parser):

parser.add_argument('username', type=str)

parser.add_argument('password', type=str)

parser.add_argument('phone', type=str)

def handle(self, *args, **options):

username = options['username']

password = options['password']

phone = options['phone']

user = User.objects.create(username=username, password=password, phone=phone)

self.stdout.write(self.style.SUCCESS(f'Register {username}!'))

You can also encode the password using the make_password function from
django.contrib.auth.hashers . This function will hash the password and return the hashed

password.

splitwise/management/commands/register.py

from django.core.management.base import BaseCommand

from django.contrib.auth.hashers import make_password

from splitwise.models import User

class Command(BaseCommand):

help = 'Register a new user'

def add_arguments(self, parser):

parser.add_argument('username', type=str)

parser.add_argument('password', type=str)

parser.add_argument('phone', type=str)

def handle(self, *args, **options):

username = options['username']

password = options['password']

phone = options['phone']

user = User.objects.create(username=username, password=make_password(password), phone

self.stdout.write(self.style.SUCCESS(f'Register {username}!'))

Creating a Group
Now, we will create a command to create a new group. First, we'll create a Group model.

splitwise/models.py

from django.db import models

class Group(models.Model):

name = models.CharField(max_length=100)

created_by = models.ForeignKey(User, on_delete=models.DO_NOTHING)

created_at = models.DateTimeField(auto_now_add=True)

members = models.ManyToManyField(User, related_name='groups')

admins = models.ManyToManyField(User, related_name='admin_groups')

Now, we'll create a command to create a new group.

splitwise/management/commands/add_group.py

from django.core.management.base import BaseCommand

class Command(BaseCommand):

help = 'Create a new group'

def add_arguments(self, parser):

parser.add_argument('name', type=str)

parser.add_argument('created_by', type=str)

parser.add_argument('members', type=str, nargs='+')

parser.add_argument('admins', type=str, nargs='+')

def handle(self, *args, **options):

name = options['name']

created_by = options['created_by']

members = options['members']

admins = options['admins']

Group.objects.create(name=name, created_by=created_by, members=members, admins=admins

self.stdout.write(self.style.SUCCESS(f'Create group {name}!'))

Here, we have used the nargs argument to specify that the members and admins

arguments can take multiple values. This is because a group can have multiple members and
admins. To specify multiple values, you can pass the values separated by spaces.

$ python manage.py add_group Roommates u1 u1 u2 u3 u1 u2

Create group Roommates!

Adding a User to a Group
Now, we'll create a command to add a user to a group. We'll call this command
add_user_to_group .

splitwise/management/commands/add_user_to_group.py

from django.core.management.base import BaseCommand

class Command(BaseCommand):

help = 'Add a user to a group'

def add_arguments(self, parser):

parser.add_argument('user', type=int)

parser.add_argument('group', type=int)

def handle(self, *args, **options):

username = options['user']

group = options['group']

user = User.objects.get(id=user)

group = Group.objects.get(id=group)

group.members.add(user)

group.save()

self.stdout.write(self.style.SUCCESS(f'Add {username} to {group}!'))

Conclusion
In this document, we learned how to create a command line interface with Django. We
created commands to register a new user, create a new group and add a user to a group. In
the next chapter, we'll see how to implement the settle up command and the debt
simplification algorithm.

	Splitwise - Command Line Interface
	Command Line Interface
	Creating a CLI with Django
	Passing Arguments to a Command
	Creating a User
	Creating a Group
	Adding a User to a Group

	Conclusion

