
Creational design patterns - Singleton

Creational design patterns

Key terms

Design patterns

Creational design patterns

Singleton

Singleton

Problem

Solution

Simple singleton - The Gang of Four implementation

A more pythonic implementation

Using a metaclass

Thread safety

Double-checked locking

Summary

Reading list

Key terms

Design patterns

A design pattern is a general, reusable solution to a commonly occurring problem

within a given context in software design. Design patterns are formalized best

practices that the programmer can use to solve common problems when designing an

application or system.

Creational design patterns

Creational design patterns provide various object creation mechanisms, which

increase flexibility and reuse of existing code.

Singleton

The singleton pattern is a software design pattern that restricts the instantiation of a

class to one object. This is useful when exactly one object is needed to coordinate

actions across the system.

Singleton

Problem

 Shared resource - Imagine you have a class that is responsible for managing the

database connection. You want to make sure that only one instance of this class exists

in your application. If you create multiple instances of this class, you will end up with

multiple database connections, which is not what you want. Similarly, there can be a

class that is responsible for managing the logging mechanism. You want to make sure

that only one instance of this class exists in your application. If you create multiple

instances of this class, you will end up with multiple log files, which is not what you

want.

 Single access point - Applications often require configuration. For example, you
might want to configure the database connection parameters. You want to make sure

that only one instance of this class exists in your application. A configuration class

should have a single access point to the configuration parameters. If you create

multiple instances of this class, you will end up with multiple configuration files.

Solution

Singleton pattern is a creational design pattern that lets you ensure that a class has only

one instance, while providing a global access point to this instance. To implement the

Singleton pattern, the following steps are required:

 Constructor hiding - The constructor of the singleton class should be private or

protected. This will prevent other classes from instantiating the singleton class.

 Global access point - The singleton class should provide a global access point to

get the instance of the singleton class. This global access point should be static and

should return the same instance of the singleton class every time it is called. If the

instance does not exist, it should create the instance and then return it.

Simple singleton - The Gang of Four implementation

Step 1 - Constructor hiding

The first step is to hide the constructor by making it private. This will prevent other classes

from instantiating the singleton class.

Python does not have access modifiers like Java. For now, we will throw an error if

the constructor is called.

class Database:
 def __init__(self):
 raise RuntimeError("Cannot instantiate Database class")

Step 2 - Global access point

The above code restricts the instantiation of the Database class. Now, we need to provide

a global access point to get the instance of the Database class. We can do this by creating

a static method that returns the instance of the Database class. If the instance does not

exist, it should create the instance and then return it.

class Database:
 _instance = None

 def __init__(self):
 raise RuntimeError("Cannot instantiate Database class")

 @classmethod
 def get_instance(cls):
 return cls._instance

The @classmethod decorator is used to create a class method. A class method is a

method that is bound to the class and not the object of the class. It takes the class as

the first argument. The cls argument is used to access the class attributes and

methods.

The difference between a class method and a static method is that a class method can

access and modify the class state. A static method cannot access or modify the class

state.

Step 3 - Singleton logic

To implement the get_instance() method, we need to create a static variable of the

Database class. This variable will hold the instance of the Database class. We will initialize

this variable to null. The get_instance() method will check if the instance variable is null.

If it is null, it will create a new instance of the Database class and assign it to the instance

variable. Finally, it will return the instance variable. This is known as lazy initialization.

class Database:
 _instance = None

 def __init__(self):
 raise RuntimeError("Cannot instantiate Database class")

 @classmethod
 def get_instance(cls):
 if cls._instance is None:
 cls._instance = cls.__new__(cls)
 return cls._instance

The __new__() method is an example of a dunder method. Dunder methods are

special methods that are surrounded by double underscores.

The __new__() method is called when an object is created. It is responsible for

creating the object and returning it. The __init__() method is called after the object

is created. It is responsible for initializing the object.

A more pythonic implementation

The above implementation is the one proposed by the Gang of Four. However, it is not very

pythonic since it requires private access modifiers. While we can raise an error, it is not an

ideal solution. As mentioned, Python exposes the __new__() dunder method to create an

object. This method can be used for alternative initialization. We can use this method to

create a singleton object.

class Database:
 _instance = None

 def __new__(cls):
 if cls._instance is None:
 cls._instance = super().__new__(cls)
 return cls._instance

In the above implementation, we are overriding the __new__() method to check if the

instance variable is null. If it is null, we are creating a new instance of the Database class

and assigning it to the instance variable. Finally, we are returning the instance variable.

To create an object above we are calling the __new__() method on the super class. The

super class is the class from which the Database class inherits. In this case, the super

class is the object class. The object class is the base class of all classes in Python.

Now if we try to create an object of the Database class, we will get the same instance

every time.

db1 = Database()
db2 = Database()

print(db1 is db2) # True

Using a metaclass

A metaclass is a class whose instances are classes. In other words, a metaclass is

a class that creates a class. A metaclass is also known as a class factory.

Another pythonic implementation of the singleton pattern is to use a metaclass. We can

create a metaclass that will create a singleton class. It exposes a __call__() dunder
method that will create an instance of the singleton class. The __call__() dunder
method is called when an object is created. It is responsible for creating the object and

returning it.

To create a metaclass, we need to inherit from the type class. The type class is the
metaclass of all classes in Python. The type class is responsible for creating all classes in

Python.

class SingletonMeta(type):
 _instances = {}

 def __call__(cls):
 if cls not in cls._instances:
 cls._instances[cls] = super().__call__()
 return cls._instances[cls]

Here, we create a metaclass called SingletonMeta . It has a static variable called
 _instances that will hold the instances of the singleton class. We are using a dictionary

to store the instances since we can reuse this metaclass for different singleton classes.

The overriden __call__() dunder method checks if the class is present in the dictionary.

If it is not present, it creates a new instance of the class and adds it to the dictionary.

Finally, it returns the instance of the class.

Now, we can create a singleton class by inheriting from the SingletonMeta metaclass.

class Database(metaclass=SingletonMeta):
 pass

Now if we try to create an object of the Database class, we will get the same instance

every time.

db1 = Database()
db2 = Database()

print(db1 is db2) # True

Thread safety

The above code is not thread-safe. If two threads create an object at the same time, both

threads will check if the instance variable is null. Both threads will find that the instance

variable is null and will create a new instance of the Database class. This will result in two

instances of the Database class.

To make the above code thread-safe, we will need to synchronise the creation of the

instance of the Database class. This can be done using the Lock class from the threading

module.

from threading import Lock

class SingletonMeta(type):
 _instances = {}
 _lock: Lock = Lock()

 def __call__(cls):
 with cls._lock:
 if cls not in cls._instances:
 cls._instances[cls] = super().__call__()
 return cls._instances[cls]

Here, we are using the with statement to acquire the lock. The with statement is used
to wrap the execution of a block of code with methods defined by a context manager.

The lock will be released when the execution of the block of code is finished. This ensures

that only one thread can create an instance of the Database class at a time.

Now, if two threads try to create an instance of the Database class at the same time, one

thread will acquire the lock and create an instance of the Database class. The other thread

will wait for the lock to be released. Once the lock is released, it will acquire the lock, but it

will find that the instance variable is not null. It will return the existing instance of the

Database class.

Double-checked locking

The above code is thread-safe, however it is not efficient.

The lock is only required when the instance variable is null. If the instance has already

been created, there is no need to acquire the lock. This is where double-checked locking

comes in.

Double-checked locking is a software design pattern used to reduce the overhead

of acquiring a lock by first testing the locking criterion (the instance variable) without

actually acquiring the lock. Only if the locking criterion check indicates that locking is

required does the actual locking logic proceed.

So we will implement the double-checked locking pattern as follows:

1. Check if the instance variable is null. If it is not null, return the instance variable.

2. If the instance variable is null, enter the synchronized block.

3. Check the instance variable again. If it is still null, create a new instance of the

Database class and assign it to the instance variable.

The double check is done to ensure that only one thread creates an instance of the

Database class. If two threads enter the synchronized block at the same time, one thread

will create an instance of the Database class and assign it to the instance variable. The

other thread will find that the instance variable is not null and will return the existing

instance of the Database class.

from threading import Lock

class SingletonMeta(type):
 _instances = {}
 _lock: Lock = Lock()

 def __call__(cls):
 if cls not in cls._instances: # FIRST CHECK
 with cls._lock:
 if cls not in cls._instances: # SECOND CHECK
 cls._instances[cls] = super().__call__()
 return cls._instances[cls]

Summary

The singleton pattern is a creational design pattern that lets you ensure that a class

has only one instance, while providing a global access point to this instance.

Use cases of singleton pattern

Shared resource like database connection, logging mechanism

Object that should be instantiated only once like configuration object

Hide the constructor of the singleton class by making it private so that other classes

cannot instantiate the singleton class.

Add a static method that returns the instance of the singleton class. If the instance

does not exist, it should create the instance and then return it.

Pythonic implementation

Use __new__() dunder method to create an object

Use a metaclass to create a singleton class

Thread safety

Make the object creation synchronised

Use double-checked locking.

 Code

Simple singleton (https://github.com/scaleracademy/lld-python/blob/main/design-

patterns/src/creational/singleton/simple/database.py)

Pythonic (https://github.com/scaleracademy/lld-python/blob/main/design-

patterns/src/creational/singleton/pythonic/database.py)

Metaclass (https://github.com/scaleracademy/lld-python/blob/main/design-

patterns/src/creational/singleton/metaclass/singleton.py)

Double Checked Locking (https://github.com/scaleracademy/lld-python/blob/main/design-

patterns/src/creational/singleton/threadsafe/singleton.py)

Reading list

Dunder methods (https://www.pythonmorsels.com/what-are-dunder-methods/)

Python metaclasses (https://realpython.com/python-metaclasses/)

Global object pattern (https://python-patterns.guide/python/module-globals/)

https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/singleton/simple/database.py
https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/singleton/simple/database.py
https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/singleton/pythonic/database.py
https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/singleton/pythonic/database.py
https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/singleton/metaclass/singleton.py
https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/singleton/metaclass/singleton.py
https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/singleton/threadsafe/singleton.py
https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/singleton/threadsafe/singleton.py
https://www.pythonmorsels.com/what-are-dunder-methods/
https://realpython.com/python-metaclasses/
https://python-patterns.guide/python/module-globals/

