
Design a parking lot

Design a parking lot

Requirements gathering

Requirements

Use case diagrams

Actors

Use cases

Actor 1

Actor 2

Actor 3

API design

Admin APIs

Parking lot APIs

Parking spot APIs

Parking attendant APIs

Check empty slots

Issue a ticket

Collect payment

Checkout

Class diagram

A parking lot or car park is a dedicated cleared area that is intended for

parking vehicles. In most countries where cars are a major mode of

transportation, parking lots are a feature of every city and suburban area.

Shopping malls, sports stadiums, megachurches, and similar venues often

feature parking lots over large areas

Reference (https://github.com/tssovi/grokking-the-object-oriented-design-

interview/blob/master/object-oriented-design-case-studies/design-a-parking-lot.md)

https://github.com/tssovi/grokking-the-object-oriented-design-interview/blob/master/object-oriented-design-case-studies/design-a-parking-lot.md
https://github.com/tssovi/grokking-the-object-oriented-design-interview/blob/master/object-oriented-design-case-studies/design-a-parking-lot.md


Parking lot is an open area designated for parking cars. We will design a

parking lot where a certain number of cars can be parked for a certain amount

of time. The parking lot can have multiple floors where each floor carries

multiple slots. Each slot can have a single vehicle parked in it.

Reference (https://medium.com/double-pointer/system-design-interview-parking-lot-system-

ff2c58167651)

https://medium.com/double-pointer/system-design-interview-parking-lot-system-ff2c58167651
https://medium.com/double-pointer/system-design-interview-parking-lot-system-ff2c58167651


Requirements gathering

What are some questions you would ask to gather requirements?

1. Can a parking lot have multiple floors?
2. Can a parking lot have multiple entrances?
3. Can a parking lot have multiple exits?
4. Can a parking lot have multiple types of vehicles?
5. Can we park any type of vehicle in any slot?
6. How do we get a ticket?
7. How do we know if a slot is empty?
8. How are we allocated a slot?
9. How do we pay for parking?
10. What are the multiple ways to pay for parking?

Requirements

What will be 10 requirements of the system, according to you?

Do not worry about the correctness of the requirements, just write down whatever

comes to your mind.

Your job is not to generate the requirements, but get better at understanding

problem statements and anticipating the functionalities your application might

need.

Build an online parking lot management system that can support the following

requirements:

Should have multiple floors.

Multiple entries and exit points.

A person has to collect a ticket at entry and pay at or before exit.

Pay at:

Exit counter (Cash to the parking attendant)

Dedicated automated booth on each floor

Online

Pay via:

Cash

Credit Card

UPI

Allow entry for a vehicle if a slot is available for it. Show on the display at entry

if a slot is not available.

Parking Spots of 3 types:

Large



Medium

Small

A car can only be parked at its slot. Not on any other (even larger).

A display on each floor with the status of that floor.

Fees calculated based on per hour price: e.g. 50 rs for the first hour, then 80 rs

per extra hour.

Small - 50, 80

Medium - 80, 100

Large - 100, 120

Use case diagrams

Are the requirements clear enough to define use cases?

If not, try to think of the actors and their interactions with the system.

Actors

What would be the actors in this system?

1. Customer

2. Parking Attendant, Operator

3. Admin

Use cases

What would be the use cases i.e. the interactions between the actors and the

system?

Actor 1

Name of the actor -  Admin 

Use cases:  CRUD 

1.  Create a parking lot 

2.  Create a parking floor 

3.  Add new parking spots 

4.  Update status of a parking spot 

Actor 2

Name of the actor -  Parking attendant 
Use cases:



1.  Check empty slots 

2.  Issue a ticket  -  Allocating a slot 

3.  Collect payment 

4.  Checkout  -  Has the user paid? 

Actor 3

Name of the actor -  Customer 
Use cases:

1.  Pay  -  Pay online ,  Pay at exit gate 

2.  Check status 

Add more actors and their use cases as needed.



FastAndCalm

Add a parking lot

Add a parking floor

Add a parking spot

Update status of parking spot

Pay

Pay Online

Pay Cash

Check spot's status

Check empty slots

Issue a ticket

Collect payment

Checkout

Allocate a slot

CheckPaymentStatus

ParkingAttendant

Customer

Admin

extends

extends

includes

includes



API design

What will be some APIs that you would design for this system?

Look at the use cases and try to design APIs for each of them.

You can simply write the APIs in the following format:

 API name  -  HTTP method  -  URL  -  ?Request body  -  ?Response body 

You could also use a tool like Swagger (https://swagger.io/) to design the APIs or follow

this (https://github.com/jamescooke/restapidocs) repository for a simple way to use

Markdown to structure your API documentation.

Admin APIs

All the various use cases are simple CRUD operations. We can design the following

APIs for the admin:

Parking lot APIs

 createParkingLot  -  POST /parking-lot  - Request body:  ParkingLot 

 getParkingLot  -  GET /parking-lot/{id}  - Response body:  ParkingLot 

 getAllParkingLots  -  GET /parking-lot  - Response body:
 List<ParkingLot> 

 updateParkingLot  -  PUT /parking-lot/{id}  - Request body:  ParkingLot 

 deleteParkingLot  -  DELETE /parking-lot/{id} 

Similarly, we can design APIs for  ParkingFloor ,  ParkingSpot .

Parking spot APIs

 createParkingSpot  -  POST /parking-spot  - Request body:  ParkingSpot 

 getParkingSpot  -  GET /parking-spot/{id}  - Response body:  ParkingSpot 

 getAllParkingSpots  -  GET /parking-spot  - Response body:
 List<ParkingSpot> 

 updateParkingSpot  -  PUT /parking-spot/{id}  - Request body:
 ParkingSpot 

 deleteParkingSpot  -  DELETE /parking-spot/{id} 

You might also want an API to  Update status of a parking spot . This can be
done by using the existing  updateParkingSpot  API or by creating a new API that

only updates the status of the parking spot.

https://swagger.io/
https://github.com/jamescooke/restapidocs


 updateParkingSpotStatus  -  PUT /parking-spot/{id}/status  - Request
body:  ParkingSpotStatus 

 getParkingSpotStatus  -  GET /parking-spot/{id}/status  - Response body:
 ParkingSpotStatus 

Parking attendant APIs

Use cases:

1.  Check empty slots 

2.  Issue a ticket  -  Allocating a slot 

3.  Collect payment 

4.  Checkout  -  Has the user paid? 

Check empty slots

Let us look at the various requirements for a parking spot:

CRUD on parking spots

Get all parking spots

Get all available parking spots

We can augment our current  getAllParkingSpots  API by adding a query

parameter to filter the parking spots based on their status. This will allow us to get

all the available parking spots as well.

Get all parking spots

 getAllParkingSpots  -  GET /parking-spot  - Response body:
 List<ParkingSpot> 

Get all available parking spots

 getAllParkingSpots  -  GET /parking-spot?status=AVAILABLE  - Response
body:  List<ParkingSpot> 

Get all occupied parking spots

 getAllParkingSpots  -  GET /parking-spot?status=OCCUPIED  - Response
body:  List<ParkingSpot> 

Issue a ticket

 issueTicket  -  POST /ticket  - Request body:  TicketRequest  - Response
body:  Ticket 



We might not want to use the current  Ticket  class for the request body since it
contains a lot of information that is either not required or is not available at the time

of ticket generation. We can create a new class  TicketRequest  that contains only
the required information.

TicketRequest

+String licensePlate

+VehicleType vehicleType

Collect payment

 collectPayment  -  POST /payment  - Request body:  PaymentRequest  -
Response body:  Payment 

PaymentRequest:

PaymentRequest

+String ticketId

+PaymentType paymentType

Checkout

 checkout  -  POST /checkout  - Request body:  CheckoutRequest  - Response
body:  CheckoutResponse 

CheckoutRequest:

CheckoutRequest

+String ticketId

+Date checkoutTime

+String exitGateId



Class diagram

What will be the major classes and their attributes?

ParkingLot

Name

Address

ParkingFloors

Entry Gates

Exit Gates

ParkingFloor

Floor Number

ParkingSpots

ParkingSpot

Spot Number

Spot Type -  Large, Medium, Small 

Status -  Occupied, Free, Out of order 

ParkingTicket

Ticket ID

ParkingSpot

Entry Time

Vehicle

Entry Gate

Entry Operator

Invoice

Invoice ID

Exit Time

ParkingTicket

Amount

Payment

Payment Status

Payment



Amount

Ticket

Type -  Cash, Credit Card, UPI 

Status -  Done, Pending 

Time

Vehicle

License Plate

Vehicle Type -  Car, Truck, Bus, Bike, Scooter 

ParkingAttendant

Name

Email

List down the cardinalities of the relationships between the classes.

 ParkingLot  -  ParkingFloor  - One to many

 ParkingLot  -  ParkingGate  -  entryGates  - One to many

 ParkingLot  -  ParkingGate  -  exitGates  - One to many

 ParkingFloor  -  ParkingSpot  - One to many

 ParkingGate  -  ParkingAttendant  -  currentGate  - One to one

 ParkingSpot  -  ParkingTicket  - One to many

 ParkingTicket  -  Invoice  - One to one

 ParkingTicket  -  Vehicle  - Many to one

 ParkingTicket  -  ParkingSpot  - Many to one

 Payment  -  ParkingTicket  - One to one

Draw the class diagram.



1

*

entryGates

1

*
exitGates

1

*

1

*

1

1

generated for

*

1

generated for
*

1

generated at

*

1

generated by

*

1

generated for

1

1

paid by
1

1

*

1

*

1

paid for

1

1

*

1

*

1

*

1

*

1

*

1

ParkingLot

+String name

+String address

+ParkingFloor[] parkingFloors

+ParkingGate[] entryGates

+ParkingGate[] exitGates

ParkingFloor

+int floorNumber

+ParkingSpot[] parkingSpots

+PaymentCounter paymentCounter

PaymentCounter

+int counterNumber

ParkingSpot

+int spotNumber

+ParkingSpotType spotType

+ParkingSpotStatus status

ParkingTicket

+String ticketId

+ParkingSpot parkingSpot

+Date entryTime

+Vehicle vehicle

+ParkingGate entryGate

+ParkingAttendant entryOperator

Invoice

+String invoiceId

+Date exitTime

+ParkingTicket parkingTicket

+double amount

+Payment payment

Payment

+double amount

+ParkingTicket ticket

+PaymentType type

+PaymentStatus status

+Date time

Vehicle

+String licensePlate

+VehicleType vehicleType

ParkingAttendant

+String name

+String email

ParkingGate

+String gateId

+ParkingGateType gateType

+ParkingAttendant attendant

«enumeration»

ParkingSpotType

Small,

Medium,

Large,

«enumeration»

ParkingSpotStatus

Occupied,

Free,

OutOfOrder,

«enumeration»

PaymentType

Cash,

CreditCard,

UPI,

«enumeration»

PaymentStatus

Done,

Pending,

«enumeration»

VehicleType

Car,

Truck,

Bus,

Bike,

Scooter,

«enumeration»

ParkingGateType

Entry,

Exit,

Look for differences between your class diagram and the one in the solution. List

them down below.

1. 
2. 
3.
4.
5.


