
Django REST Framework - Creating a
Booking API

• Django REST Framework - Creating a Booking API
◦ Serializers
◦ Views
◦ URL Configuration
◦ Concurrency

▪ Soft Locking
▪ Soft Locking in BookMyShow

▪ Transactions in Django REST Framework:
▪ Implementing create_booking Method as Transactional:

◦ Calculating the Booking Amount
▪ Testing the API
▪ Conclusion

In the BookMyShow application, creating a booking is the most critical part of the system. It
involves several steps, including user validation, seat availability checks, transaction
management, and pricing calculation. In this document, we'll discuss the Django REST
Framework implementation for the booking creation API, focusing on transactions and pricing
strategies.

Before we get started, let us the list the process for implementing the booking creation API:

1. Create a serialiser for the Booking model
2. Implement the booking creation view
3. Modify the URL configuration

Serializers
First, let's create a serialiser for the Booking model. In the serializers.py file in the
bookings app, add the following code:

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

from rest_framework import serializers

from .models import Booking

class BookingSerializer(serializers.ModelSerializer):

class Meta:

model = Booking

fields = '__all__'

This serializer will handle the conversion of Booking model instances to JSON and vice
versa.

Views
Now, let's create views for handling the booking creation API.
The logical steps for creating a booking are:

1. Get the user
2. Get the show
3. Get the show seats
4. Check if all the seats are available
5. Mark all the seats as locked
6. Calculate and update the booking amount
7. Create and save the booking

In the views.py file in the bookings app, add the following code:

from rest_framework import generics, status

from rest_framework.response import Response

from django.shortcuts import get_object_or_404

from .models import Booking, ShowSeat, SeatStatus

from .serializers import BookingSerializer

from .services import PricingStrategy

class BookingCreateView(generics.CreateAPIView):

serializer_class = BookingSerializer

def create(self, request, *args, **kwargs):

Step 1 - Get the user through ID

Step 1b) - If user is not present, throw error

user_id = request.data.get('user_id')

user = get_object_or_404(User, id=user_id)

Step 2 - Get the show using show ID

Step 2b) - If show is not present, throw error

show_id = request.data.get('show_id')

show = get_object_or_404(Show, id=show_id)

Step 3 - Get the show seats using showSeat IDs

Step 4 - Check if all the seats are available

show_seat_ids = request.data.get('seat_ids', [])

show_seats = ShowSeat.objects.filter(id__in=show_seat_ids)

for seat in show_seats:

if seat.status != SeatStatus.AVAILABLE:

raise ValueError("Seat is not available")

Step 5 - Mark all the seats as locked

for seat in show_seats:

seat.status = SeatStatus.LOCKED

seat.save()

Step 7 - Create and save the booking

booking_data = {

"user": user.id,

"show": show.id,

"seats": show_seats,

"status": BookingStatus.PENDING,

"booked_at": timezone.now(),

}

serializer = BookingSerializer(data=booking_data)

serializer.is_valid(raise_exception=True)

serializer.save()

Step 8 - Calculate and update the booking amount

We shall come back to this step later

amount = None

serializer.instance.amount = amount

serializer.instance.save()

return Response(serializer.data, status=status.HTTP_201_CREATED)

In this view, we've created a BookingCreateView class that inherits from CreateAPIView .
This view handles the POST requests for creating a new booking. There are a lot of things
going on in this method, so let's break it down into steps:

1. Fetching a user and a show - The first step is to fetch the user and the show
using their IDs. If the user or the show is not present, we throw an error. This can
be done using the get_object_or_404 method which returns the object if it
exists, or throws a Http404 exception.

2. Fetching show seats - The next step is to fetch the show seats using their IDs.
You can query the database using the models you created in the previous
sessions. Here, we only want the seats with the ids that are passed in the request.
We can do this using the filter method and the __in operator. This will write a
query like SELECT * FROM show_seat WHERE id IN (1, 2, 3, 4, 5) .

3. Checking seat availability - Once we have the show seats, we need to
check if all the seats are available. If any of the seats are not available, we throw
an error. This can be done by iterating over the show seats and checking if the
status is SeatStatus.AVAILABLE . If not, we raise a ValueError .

4. Locking the seats - Once we've checked the seat availability, we need to lock
the seats. This can be done by iterating over the show seats and setting the
status to SeatStatus.LOCKED . We also need to save the seats after updating the

status.
5. Creating the booking - Now that we have the user, show, and show seats, we

can create the booking. We create a dictionary with the booking data and pass it
to the BookingSerializer . We then check if the serialiser is valid and save the
booking. The save method will perform the database operation to create the
booking.

URL Configuration
Register the URL for the booking creation view in the urls.py file in the bookings app:

HTTP Status Codes

HTTP status codes are a standard way of communicating the status of an HTTP
request. There are several status codes, and each code has a specific meaning.
Following are the different families of status codes: - 1xx - Informational

• 2xx - Success
• 3xx - Redirection
• 4xx - Client Error
• 5xx - Server Error

Some common status codes are:

• 200 - OK - The request was successful
• 201 - Created - The request was successful and a new resource was

created
• 400 - Bad Request - The request was invalid and could not be processed
• 401 - Unauthorized - The request was not authorized
• 404 - Not Found - The requested resource was not found
• 500 - Internal Server Error - The server encountered an error while

processing the request



from django.urls import path

from .views import BookingCreateView

urlpatterns = [

path('booking/', BookingCreateView.as_view(), name='booking-create'),

]

This sets up an endpoint /bookings/create/ for creating a new booking.

Concurrency
A shortcoming of the above implementation is that it does not handle concurrency. If two
users try to book the same seat at the same time, both the bookings will be created. This is
because the seat availability check and the seat locking are not atomic operations. To solve
this problem, we can use different mutual exclusion or locking techniques.

Soft Locking
Soft locking is a concurrency control mechanism used to manage access to shared
resources, ensuring that multiple transactions do not interfere with each other. In the context
of a ticket booking system like BookMyShow, soft locking is often employed to prevent
multiple users from simultaneously booking the same seat for a show.

The basic idea behind soft locking is to mark a resource (e.g., a seat) as temporarily
unavailable or "locked" when a user starts a transaction to reserve or book that resource. This
prevents other users from accessing or modifying the same resource concurrently until the
transaction is completed. Soft locking is "soft" because it relies on cooperation between
transactions rather than rigid locks that block access completely.

Soft Locking in BookMyShow

In the context of BookMyShow, the process might look like this:

1. User A selects seats for booking:
• The seats are marked as "soft-locked" to indicate that User A is in the

process of booking them.
• These soft-locked seats are temporarily unavailable to other users.

2. User B attempts to select the same seats:
• Since the seats are soft-locked, User B is notified that the seats are

currently being booked by another user.
• User B can then choose alternative seats or wait for the soft-lock to

be released.
3. User A completes the booking transaction:

• The soft lock is released, and the seats are marked as officially
booked.

• Other users can now see that these seats are no longer available.

Transactions in Django REST Framework:
Django provides built-in support for database transactions, and Django REST Framework
(DRF) inherits this functionality. In DRF, you can use the @transaction.atomic decorator or
the transaction.atomic context manager to ensure that a block of code is executed within
a single database transaction.

Implementing create_booking Method as Transactional:
Assuming you have a BookingService class with a create_booking method, you can make
it transactional using the @transaction.atomic decorator. However, we don't need to make
the entire method transactional. We only need to make the seat locking part transactional. So,
you can extract the seat locking logic into a separate method and make it transactional.

We will use the serializable isolation level, which is the highest level of isolation and
ensures that the transaction is executed in a serial order, and only one transaction can access
a resource at a time.

from django.db import transaction

from django.utils import timezone

from .models import Booking, ShowSeat, SeatStatus

class BookingService:

@transaction.atomic(isolation=transaction.ISOLATION_LEVEL_SERIALIZABLE)

def lock_seats(self, show_seats):

show_seat_ids = request.data.get('seat_ids', [])

show_seats = ShowSeat.objects.filter(id__in=show_seat_ids)

for seat in show_seats:

if seat.status != SeatStatus.AVAILABLE:

raise ValueError("Seat is not available")

Step 5 - Mark all the seats as locked

for seat in show_seats:

seat.status = SeatStatus.LOCKED

seat.save()

Here, the @transaction.atomic decorator ensures that the entire lock_seats method is
executed within a single database transaction. If any exception occurs during the process,
the transaction is rolled back, and the database is left in a consistent state.

This approach helps maintain the integrity of the database and prevents issues related to
concurrent access to the same resources, providing a level of soft locking within the
transactional context. It ensures that either the entire booking process succeeds, or it fails
and leaves the system in a consistent state.

Calculating the Booking Amount
The booking amount is calculated based on the number of seats booked and the price of
each seat. However, this is not as simple as it sounds. It could be based on multiple factors
such as:

• Time of the show
• Day of the week
• Seat type

• Theatres

To handle these different pricing strategies, we can use the Strategy design pattern. The
Strategy pattern is a behavioral design pattern that enables selecting an algorithm at runtime.
It defines a family of algorithms, encapsulates each algorithm, and makes the algorithms
interchangeable within that family.

The PricingStrategy class is the base class for all pricing strategies. It defines an interface
for calculating the price. The calculate_price method is implemented by the concrete
classes that inherit from the PricingStrategy class.

from abc import ABC, abstractmethod

class PricingStrategy(ABC):

@abstractmethod

def calculate_price(self, booking: Booking) -> float:

pass

Let us implement a simple pricing strategy just based on the number of seats booked and the
type of seats.

class SeatBasedPricingStrategy(PricingStrategy):

def calculate_price(self, booking: Booking) -> float:

price = 0

for seat in booking.seats.all():

price += self.decide_price(seat.type)

return price

@staticmethod

def decide_price(type: SeatType) -> float:

return {

SeatType.GOLD: 100,

SeatType.PREMIUM: 200,

SeatType.EXECUTIVE: 300,

}[type]

Testing the API
You can start the server using python manage.py runserver and test the API using
Postman.
The API will be available at http://localhost:8000/booking/ . You can send a POST

request to this URL with the following body:

{

"user_id": 1,

"show_id": 1,

"seat_ids": [1, 2, 3, 4, 5]

}

To create a booking, you would need to create the associated entities.

Conclusion
In this session, we implemented the booking creation API using Django REST Framework,
focusing on transactions, pricing strategies, and user validation. The API is designed to
handle the booking creation process efficiently with proper error handling and response
messages.

Next steps:

1. Create the associated views for the booking creation API such as Movie , Show ,
etc.

2. Implement the cancellation flow for the booking creation API.
3. Implement different pricing strategies based on the time of the show, day of the

week, seat type, etc.

💻💻 You can find the associated code here.

https://github.com/scaleracademy/lld-python/tree/main/design-questions/book_my_show/book_my_show

	Django REST Framework - Creating a Booking API
	Serializers
	Views
	URL Configuration
	Concurrency
	Soft Locking
	Soft Locking in BookMyShow

	Transactions in Django REST Framework:
	Implementing create_booking Method as Transactional:

	Calculating the Booking Amount
	Testing the API
	Conclusion

