BookMyShow - User API

* BookMyShow - User API
o Serialisers
o Views

Create a user

* Read, update and delete a user
Register the URLs

Testing the API

= Modifying the response

> Password Hashing
= Why is Password Hashing Done?
= Salt
= Bcrypt
= Using Bcerypt in Django

o Conclusion

Serialisers

In our previous session, we created all the models for BookMyShow using Django ORM. Now,
we will create the User API using Django REST Framework. To start with, we will create the
serialisers for the User model. Serialisers are used to convert the data from the model into a
format that can be sent over the network.

@ Serialisation

Serialisation and deserialisation are common terms used when data is sent over the
network. Serialisation is the process of converting data into a format that can be sent
over the network. Deserialisation is the process of converting the data back into the
objects that can be used by the application. Another set of terms for the same are
marshalling and unmarshalling.

Create a new file serialisers.py inthe users app. Add the following code to it:



www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.


from rest_framework import serializers

class UserSerialiser(serializers.ModelSerializer):
class Meta:
model = User
fields = '__all__'

Here, we are creating a serialiser for the User model:

+ We are using the ModelSerializer class provided by Django REST Framework.

+ We are specifying the model that we want to serialise and the fields that we want
to include in the serialised data.

+ In this case, we are including all the fields.

Views

Views are the functions that are called when a request is made to the API. They are similar to
the controller layer.

The request comes to the view, the view processes the request, queries the model, serialises
the data and sends it back as a response.

Django REST Framework provides a class called ModelViewSet that can be used to create
views for the models among other classes.

Create a user

Let's start with creating a view to create a user. Add the following code to views.py :

from rest_framework import generics

class UserListCreateView(generics.ListCreateAPIView):
queryset = User.objects.all()
serializer_class = UserSerializer

Here, we are creating a view called UserListCreateView that inherits from

ListCreateAPIView . This class provides the following functionalities:



+ It handles creating a new user when a POST request is made to the API.
+ Listing all the users when a GET request is made to the API.

Read, update and delete a user

Similar to the ListCreateAPIView , Django REST Framework provides a class called
RetrieveUpdateDestroyAPIView that can be used to create views for the models to handle
URLs that contain the primary key of the model. Add the following code to views.py :

from rest_framework import generics

class UserRetrieveUpdateDestroyView(generics.RetrieveUpdateDestroyAPIView):
queryset = User.objects.all()
serializer_class = UserSerializer

Register the URLs

Now, we need to register the URLs for the views that we created. Add the following code to

urls.py :

from django.urls import path

urlpatterns = [
path('user/', UserListCreateView.as_view(), name='user-list-create'),
path('user/<int:pk>/"', UserRetrieveUpdateDestroyView.as_view(), name='user-retrieve-u

This sets up two endpoints:

« /users/ : Handles creating new users (POST) and listing all users (GET).
« /users/<id>/ : Handles retrieving (GET), updating (PUT/PATCH), and deleting
(DELETE) a specific user.

Testing the API

Now, we can test the API using Postman. Start the server using
python manage.py runserver . Open Postman and create a new request with the following



details:

+ URL: http://localhost:8000/user/
* Request type: POST

* Body: raw - JSON

+ Body content:

{
"name": "Tantia Tope",
"email": "t@t.com",
"password": '"1857"

}

Click on Send . You should see the following response:

{
"id": 1,
"name": "Tantia Tope",
"email": "t@t.com",
"password": '"1857"

b

Now, let's try to retrieve the user that we just created. Create a new request with the following

details:
* URL: http://localhost:8000/user/1/
* Request type: GET
+ Click on Send . You should see the following response:
{

"id": 1,

"name": "Tantia Tope",

"email": "t@t.com",

"password": '"1857"



Modifying the response

We wouldn't want to send the password back to the user. Let's modify the response to
remove the password. Add the following code to serialisers.py :

from rest_framework import serializers

class AllUserFieldsSerialiser(serializers.ModelSerializer):
class Meta:
model = User
fields = '__all__'

class UserNoPasswordSerialiser(serializers.ModelSerializer):

class Meta:
model = User
fields = ['id', 'name', 'email']

You also have to override the get_serializer_class method in the views to specify which

serialiser to use. Add the following code to views.py :

class UserListCreateView(generics.ListCreateAPIView):
queryset = User.objects.all()

def get_serializer_class(self):
if self.request.method == "POST":
return AllUserFieldsSerialiser
return UserNoPasswordSerialiser

Now if you try to retrieve the user, you won't see the password in the response.

Password Hashing

Password hashing is a security practice used to protect user passwords by converting them
into a hashed, irreversible form. The purpose is to prevent attackers from easily retrieving the
original passwords even if they gain access to the hashed values. Hashing is commonly used
in authentication systems to store and verify passwords securely.



Why is Password Hashing Done?

The primary reasons for password hashing are:

1.

Salt

Security: Hashing adds a layer of security by making it computationally infeasible
for attackers to reverse the process and obtain the original password from the
hashed value.

. Protection Against Data Breaches: In the event of a data breach, if the stored

passwords are hashed, even if the hashed values are exposed, attackers cannot
directly use them to access user accounts.

Uniformity: Hashing provides a standardized representation for passwords,
making it easier to manage and compare password data.

A salt is a random value that is unique for each user. It is combined with the user's password

before hashing. Salting is done to address the vulnerability of hash tables and rainbow table

attacks.

Hash Tables: Attackers can use precomputed tables (rainbow tables) to quickly
look up the hash of a common password. Salting prevents this by ensuring that
even if two users have the same password, their hashes will be different due to

unique salts.

+ Rainbow Tables: These are precomputed tables of hash values for a large set of

Bcrypt

possible passwords. Adding a salt makes it impractical to create comprehensive
rainbow tables because each user's salt requires a separate table.

Bcerypt is a key derivation function designed specifically for password hashing. It incorporates

a work factor, which adjusts the computational cost of the hashing process. Berypt is

considered more secure than traditional hashing algorithms like MD5 or SHA-1 because:

1.

Work Factor: Berypt allows you to adjust the number of iterations (work factor),
making it computationally expensive and slowing down brute-force attacks.
Salt Inclusion: Bcrypt automatically generates and manages salts for each
password, eliminating the need for manual salt management.



3. Adaptability: As computing power increases, the work factor can be easily
adjusted to maintain a sufficient level of security.

When using Berypt in Django, the make_password function from

django.contrib.auth.hashers automatically generates a salt and hashes the password with
the Bcerypt algorithm. The check_password function is used to verify a password against its
hashed value.

In summary, password hashing, the use of salts, and the choice of a secure hashing algorithm
like Berypt are essential components of good password security practices. They protect user
credentials and contribute to the overall security of authentication systems.

Using Bcrypt in Django

Django provides a make_password function that can be used to hash the password. Add the
following code to views.py :

from django.contrib.auth.hashers import make_password

class UserListCreateView(generics.ListCreateAPIView):
queryset = User.objects.all()

def get_serializer_class(self):
if self.request.method == "POST":
return AllUserFieldsSerialiser
return UserNoPasswordSerialiser

def perform_create(self, serializer):
serializer.save(password=make_password(serializer.validated_datal['password']))

Here, we are overriding the perform_create method to hash the password before saving the
user. Now, if you try to create a user, you will see that the password is hashed in the
database.

Inthe settings.py file, add the following code:



PASSWORD_HASHERS = [
'django.contrib.auth.hashers.BCryptSHA256PasswordHasher"',

You might have to install bcrypt using pip install bcrypt .
This will ensure that the password is hashed using Bcrypt.

Conclusion

In this session, we created the User API using Django REST Framework. We also learnt about

password hashing and how to use Bcrypt in Django. In the next session, we will create the
Booking API.



	BookMyShow - User API
	Serialisers
	Views
	Create a user
	Read, update and delete a user
	Register the URLs
	Testing the API
	Modifying the response

	Password Hashing
	Why is Password Hashing Done?
	Salt
	Bcrypt
	Using Bcrypt in Django

	Conclusion


