
TicTacToe - The playing and winning
logic

• TicTacToe - The playing and winning logic
◦ Bot playing strategies
◦ The play method
◦ Winning strategies
◦ Conclusion

Bot playing strategies
So far, we have created a player class that has an abstract method play . The method is
called by the game controller to ask the player to make a move. The HumanPlayer class
implements this method by asking the user to enter the coordinates of the cell they want to
mark.

@dataclass

class Player(ABC):

symbol: Symbol

@abstractmethod

def play(self, board: Board) -> Cell:

pass

The BotPlayer class has to automatically make a move on the basis of the level of the bot.
Since, there can be multiple different algorithms for the bot to make a move, we can abstract
the logic using the strategy pattern. We can create a BotStrategy interface that has a single
method get_move which returns the next move for the bot. We can then create different
classes that implement this interface and provide different strategies for the bot to make a
move.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



from abc import ABC, abstractmethod

class BotStrategy(ABC):

@abstractmethod

def get_move(self, board: Board, symbol: Symbol) -> Cell:

pass

Let us create the easy strategy in such a way that the bot will randomly choose a cell to mark.
First, we will identify all the available cells on the board, and then randomly choose one of
them.

The get_available_cells method will look like this:

@dataclass

class Board:

size: int

cells: List[List[Cell]] = field(init=False)

...

def get_available_cells(self) -> List[Cell]:

return [cell for row in self.cells for cell in row if cell.symbol is None]

Now, we can create the RandomBotStrategy class that implements the BotStrategy

List comprehensions are a very powerful feature of Python. They allow us to
create a list in a single line of code. The syntax is as follows:

[expression for item in iterable]

The expression is evaluated for each item in the iterable and the result is
added to the list. For example, the following code will create a list of squares
of the numbers from 1 to 10.

squares = [x * x for x in range(1, 11)]





interface. The get_move method will look like this:

from random import choice

class RandomBotStrategy(BotStrategy):

def get_move(self, board: Board, symbol: Symbol) -> Cell:

available_cells = board.get_available_cells()

return choice(available_cells)

The choice method from the random module returns a random element from the list passed
to it.

Now, we can create the BotPlayer class that will use the strategy to make a move. The
play method will look like this:

@dataclass

class BotPlayer(Player):

user: User

strategy: BotStrategy

def play(self, board: Board) -> Cell:

return self.strategy.get_move(board, self.symbol)

The play method
Now that we have the playing functionalities implemented for each type of the player, we can
implement the play method in the Game class. The steps to play a move are as follows:

1. Get the current player
2. Ask the player to make a move
3. Validate the move
4. If the move is valid, mark the cell on the board
5. Check if the game has been won or is a draw
6. If the game is won or a draw, set the game status
7. If the game is not over, switch the current player

The play method will look like this:



def play(self):

current_player = self.get_current_player()

move: Cell = current_player.play(self.board, self.current_player.symbol)

validate_move(move)

board.update(move)

if self.has_won():

self.status = GameStatus.FINISHED

return

if self.is_draw():

self.status = GameStatus.DRAW

return

self.current_player_index = (self.current_player_index + 1) % len(self.players)

Here, we have used the % operator to switch the current player. The % operator returns the
remainder of the division of the first operand by the second. The remainder will always be less
than the second operand. So, we can use this to switch the current player.

Winning strategies
Similar to the bot playing strategies, we can also create different strategies to check if the
game has been won. We can create a WinningStrategy interface that has a single method
has_won which returns a boolean value indicating if the game has been won. We can then

create different classes that implement this interface and provide different strategies.

from abc import ABC, abstractmethod

class WinningStrategy(ABC):

@abstractmethod

def has_won(self, board: Board, symbol: Symbol) -> bool:

pass

Let us create the RowWinningStrategy class that checks if any row has been completely



marked by the given symbol. The has_won method will look like this:

class RowWinningStrategy(WinningStrategy):

def has_won(self, board: Board, symbol: Symbol) -> bool:

for row in board.cells:

if all(cell.symbol == symbol for cell in row):

return True

return False

The all method returns True if all the elements of the iterable are True . Otherwise, it
returns False .
We can similarly create the ColumnWinningStrategy and DiagonalWinningStrategy

classes.

One small difference between the BotPlayer and the WinningStrategy classes is that the
Game class has to check if any of the strategies has won the game. So, we need to maintain

a list of strategies in the Game class. The has_won method will look like this:

@dataclass

class Game:

...

winning_strategies: List[WinningStrategy] = field(default_factory=list)

...

def has_won(self) -> bool:

for strategy in self.winning_strategies:

if strategy.has_won(self.board, self.current_player.symbol):

return True

return False

Checking for a draw could be a strategy as well, but we will keep it simple for now and
implement it in the Board class. A game is a draw if all the cells on the board have been
marked and no player has won.

Assuming that the has_won method is called before the is_draw method, we can check if
any cell has the symbol as None . If it does, then the game is not a draw. Otherwise, the
game is a draw. The is_draw method will look like this:



def is_draw(self) -> bool:

return len(self.board.get_available_cells()) == 0

Conclusion
We have successfully implemented TicTacToe end to end. Here are the things we
implemented:

1. Data classes for the entities
2. A game controller to take input from the user and play the game
3. A human player to take input from the user
4. Strategies for the bot to play the game
5. Strategies to check if the game has been won
6. A game class to orchestrate the game

Some of the things that we can do to improve the game are:

1. Take more input from the user like the size of the board, the number of players,
the difficulty level of the bot, etc.

2. Add more strategies for the bot to play the game
3. Add more strategies to check if the game has been won i.e. column and diagonal
4. Implement the undo functionality

💻💻 You can find the associated code here.

https://github.com/scaleracademy/lld-python/tree/main/design-questions/tictactoe

	TicTacToe - The playing and winning logic
	Bot playing strategies
	The play method
	Winning strategies
	Conclusion


