
TicTacToe - The game flow
• TicTacToe - The game flow

◦ Game controller
◦ Game class

▪ The start method
▪ The game loop

◦ The play method
◦ Conclusion

Game controller
In the previous session, we built the data classes required by our tic-tac-toe game. We will
now build the functionality required to play the game. Since we are building a console based
game, we require a controller which will be responsible for taking input from the user and
displaying the output.

For now, we will keep it simple and only take the name, email and symbol of the user. To take
input from the user, we can define the following method:

from typing import Tuple

def get_user_input() -> Tuple[str, str, Symbol]:

user_name = input("Enter your name: ")

user_email = input("Enter your email: ")

user_symbol = input("Enter your symbol: ")

parsed_symbol: Symbol = Symbol[user_symbol]

return user_name, user_email, parsed_symbol

In Python, we can use the input() function to take input from the user. The
input() function takes a string as an argument which is displayed to the

user. The user can then enter the input and press enter. The input()

function returns the input entered by the user as a string.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Apart from the input method, another thing worth noting is the Tuple type. A tuple is a
collection of elements of different types. In the above method, we are returning a tuple of 3
elements - user_name , user_email and parsed_symbol . The Tuple type hint is defined in
the typing module.

Once we have the user input, we can use it to create the User object and subsequently all
the required objects for the game.

def create_game() -> Game:

name, email, symbol = get_user_input()

user = User(name, email)

human = HumanPlayer(symbol, user)

bot = BotPlayer(decide_bot_symbol(symbol), DIFFICULTY_LEVEL)

board = Board(GAME_SIZE)

return Game(0, board, [human, bot])

def decide_bot_symbol(user_symbol: Symbol) -> Symbol:

return Symbol.X if user_symbol == Symbol.O else Symbol.O

The create_game method takes the user input and creates the User and HumanPlayer

objects. It also creates the BotPlayer object. The BotPlayer object is created by passing
the symbol of the human player and the difficulty level. The decide_bot_symbol method is
used to decide the symbol of the bot player. The create_game method also creates the
Board object and returns the Game object.

When using the dataclass decorator with an inherited parent class, the
required parent attributes are the first arguments to the constructor. You can
also use the named parameters to pass the arguments, which reduces the
need for a builder method.
user = User(name="Tantia Tope", email="t@t.com")

Game class
We had previously defined the Game class from our class diagram as follows:

@dataclass

class Game:

current_player_index: int

board: Board

players: List[Player] = field(default_factory=list)

The start method
We also need to add method to the Game class to maintain the lifecycle of the game. Let us
start with adding the start method, that will be called from the game controller. To start the
game, we need to implement the following steps:

1. Randomly select the first player from the list of players
2. Set the current_player_index to the index of the first player
3. Set the game status to be in progress

First let us define a status enum for the game:

from enum import Enum

class GameStatus(Enum):

IN_PROGRESS = 1

FINISHED = 2

DRAW = 3

Now we can define the start method:

def start(self):

self.current_player_index = random.randint(0, len(self.players) - 1)

self.status = GameStatus.IN_PROGRESS

The random.randint method is used to generate a random integer between the given range.
Here, we generate a random integer between 0 and the length of the list of players. We then

set the current_player_index to this random integer.

We can also define a get_current_player method to get the current player:

def get_current_player(self) -> Player:

return self.players[self.current_player_index]

The game loop
Let's also think about the other steps of the game lifecycle.

1. The game asks the user for their details and creates the game objects
2. The game starts
3. The game asks the current player to make a move. If the current player is a bot,

make a bot move
4. The game checks if the move is valid
5. If the move is valid, the game updates the board
6. The game checks if the user has won or the game is a draw
7. If the game is not over, the game switches the current player and goes to step 3
8. If the game is over, the game displays the result and exits

Let us add some dummy method for the remaining steps in our Game class for now. We shall
come back to these methods later.

from typing import Optional

@dataclass

class Game:

current_player_index: int

board: Board

players: List[Player] = field(default_factory=list)

status: GameStatus = GameStatus.FINISHED

winner: Optional[Player] = None

def start(self):

self.current_player_index = random.randint(0, len(self.players) - 1)

self.status = GameStatus.IN_PROGRESS

def get_current_player(self) -> Player:

return self.players[self.current_player_index]

def play(self):

pass

def is_valid_move(self, move: Move) -> bool:

pass

def has_won(self) -> bool:

pass

def is_draw(self) -> bool:

pass

def get_winner(self) -> Optional[Player]:

return self.winner

To implement the game flow, once the game has been created we will run an infinite loop. In
each iteration, we shall check if any of the terminating conditions have been met. If they have,
we shall break out of the loop. Otherwise, we shall ask the current player to make a move. So
far, our game controller looks like this:

GAME_SIZE = 3

DIFFICULTY_LEVEL = Level.EASY

def get_user_input() -> Tuple[str, str, Symbol]:

user_name = input("Enter your name: ")

user_email = input("Enter your email: ")

user_symbol = input("Enter your symbol: ")

parsed_symbol: Symbol = Symbol[user_symbol]

return user_name, user_email, parsed_symbol

def create_game() -> Game:

name, email, symbol = get_user_input()

user = User(name, email)

human = HumanPlayer(symbol, user)

bot = BotPlayer(decide_bot_symbol(symbol), DIFFICULTY_LEVEL)

board = Board(GAME_SIZE)

return Game(0, board, [human, bot])

def decide_bot_symbol(user_symbol: Symbol) -> Symbol:

return Symbol.X if user_symbol == Symbol.O else Symbol.O

def main():

print("Welcome to Tic Tac Toe!")

Take user input for player name, email and symbol

game = create_game()

if __name__ == "__main__":

main()

Let's add the start method and our game loop now:

def main():

print("Welcome to Tic Tac Toe!")

game = create_game()

game.start()

while game.status == GameStatus.IN_PROGRESS:

current_player = game.get_current_player()

print(f"Next turn: {current_player.symbol.name}")

current_player.play()

if (game.status == GameStatus.FINISHED):

print(f"{game.get_winner().symbol} has won!")

break

if (game.status == GameStatus.DRAW):

print("The game is a draw!")

break

The play method
The play method is responsible for asking the current player to make a move. If the current
player is a bot, we need to make a bot move. Otherwise, we need to ask the user to make a
move. Let's start by implementing it in the human player. We first need an abstract method in
the Player class since it will be implemented by both the HumanPlayer and BotPlayer

classes.

from abc import ABC, abstractmethod

from dataclasses import dataclass

@dataclass

class Player(ABC):

symbol: Symbol

@abstractmethod

def play(self, board: Board) -> Cell:

pass

For the HumanPlayer class, we can simply ask the user to enter the row and column of the
cell they want to mark. We can then return the cell object corresponding to the row and
column entered by the user.

from dataclasses import dataclass

@dataclass

class HumanPlayer(Player):

user: User

def play(self, board: Board) -> Cell:

row = int(input("Enter row: "))

col = int(input("Enter col: "))

return Cell(row, col)

Conclusion
In this session, we implemented the game controller and the game loop. We also added the
play method to the HumanPlayer class. In the next session, we will implement the play

method for the BotPlayer class, and also complete the remaining methods in the game
flow.

💻💻 You can find the associated code here.

https://github.com/scaleracademy/lld-python/tree/main/design-questions/tictactoe

	TicTacToe - The game flow
	Game controller
	Game class
	The start method
	The game loop

	The play method
	Conclusion

