
21/11/2023, 11:50 TicTacToe - Data Models - HackMD

https://hackmd.io/CuYqHUf3SeSQI980xTS-Rw?view 1/20

TicTacToe - Data Models

TicTacToe - Data Models

Data models

Standard classes

Dataclasses

The Board class

The Player classes

Conclusion

Data models

A data model is a conceptual representation of the data

structures that are required by an application. A data model

is the code equivalent of a UML class diagram of the

entities. It is used to define the logical structure and

essentially determines in which manner data can be stored,

organized, and manipulated. There can be different sets of

data models depending on the abstraction level at which

they are used. We shall talk a lot more about this when we

discuss the three-layered architecture.

For tic-tac-toe, we shall be creating classes which contain

the state (i.e. the attributes) and the behavior (i.e. the

methods) of the entities. There are multiple ways to define

data models in Python.

Standard classes

Classes are defined in Python using the class keyword and

the attributes are initialised in the __init__ method. As
mentioned before, the __init__ method is an example of a

dunder function. The __init__ method is called when an

object of the class is created. The self keyword is used to

refer to the object itself. The self keyword is similar to the

 this keyword in Java and C++.

Let us start by creating a simple class for the Game entity

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

21/11/2023, 11:50 TicTacToe - Data Models - HackMD

https://hackmd.io/CuYqHUf3SeSQI980xTS-Rw?view 2/20

Game

- int nextPlayerIndex

- Board board

- Player[] players

class Game:
 def __init__(self, board, players):
 self.current_player_index = 0
 self.board = board
 self.players = players

Python is a dynamically typed language. This means that the

type of a variable is inferred at runtime. This is in contrast to

statically typed languages like Java and C++ where the type

of a variable is known at compile time, and we do not need

to specify the type of the attributes of a class. However, it is

a good practice to specify the type of the attributes using

type hints. This helps in understanding the code better and

also helps in catching bugs early. The type hints are not

enforced by the Python interpreter, but there are tools like

mypy (https://mypy.readthedocs.io/en/stable/) which can be used to enforce

type hints.

from typing import List
class Game:
 def __init__(self, board: Board, players: List[Player]):
 self.current_player_index = 0
 self.board = board
 self.players = players

Before creating the Board class, let us see a different and

more concise way of defining classes in Python.

Dataclasses

The dataclasses module was introduced in Python 3.7. It

provides a decorator and functions for automatically adding

generated special methods such as __init__ and
 __repr__ to user-defined classes. It also provides a

function decorator which can be used to add generated

special methods to existing classes.

https://mypy.readthedocs.io/en/stable/

21/11/2023, 11:50 TicTacToe - Data Models - HackMD

https://hackmd.io/CuYqHUf3SeSQI980xTS-Rw?view 3/20

Decorators are a way to dynamically alter the

functionality of a function, method, or class without

having to directly use subclasses or change the source

code of the decorated function. This is ideal when you

need to extend the functionality of functions that you

don’t want to modify. Decorators are prefixed with an @
symbol and are placed above the function definition. They

are similar to annotations in Java.

Let us see how we can use the dataclasses module to

create the Game class.
from dataclasses import dataclass

@dataclass
class Game:
 current_player_index: int
 board: Board
 players: List[Player] = field(default_factory=list)

Defining the class using the dataclass decorator is much
more concise. You add the attributes of the class along with

their types.

The dataclass decorator automatically adds the

 __init__ method to the class. The __init__ method is

used to initialise the attributes of the class.

The dataclass decorator also adds the __repr__
method to the class. The __repr__ method is used to

return a string representation of the object. The __repr__
method is called when the repr() function is called on the

object. The __repr__ method is also called when the

object is printed. The __repr__ method is similar to the

 toString() method in Java.

The field method is used to provide metadata about the

attributes of the class. Here we are using the

 default_factory parameter to specify that the default

value of the players attribute should be an empty list. The

 default_factory parameter is used to specify a callable

that will be called without arguments to initialize the

attribute. The default_factory parameter is similar to the

 default parameter in Java.

21/11/2023, 11:50 TicTacToe - Data Models - HackMD

https://hackmd.io/CuYqHUf3SeSQI980xTS-Rw?view 4/20

The Board class

Let us now look at creating the Board and the associated

classes.

Board

-Cell[][] cells

Cell

-int row

-int column

-Symbol symbol

«enumeration»

Symbol

-String name

-String image

O

X

We start with the Symbol enum class. To create an enum in

Python, we use the enum module. The enum module was

introduced in Python 3.4. Enums are a set of symbolic

names (members) bound to unique, constant values. Within

an enumeration, the members can be compared by identity,

and the enumeration itself can be iterated over.

from enum import Enum

class Symbol(Enum):
 O = 1
 X = 2

The right hand side of the assignment is the value of the

enum member that should be a unique integer. The left hand

side is the name of the enum member. The name of the

enum member is also the string representation of the enum

member. The string representation of the enum member can

be accessed using the name attribute of the enum member.

Let us create the Cell class next. The Cell class has
three attributes - row , column and symbol .
from dataclasses import dataclass

@dataclass
class Cell:
 row: int
 column: int
 symbol: Symbol

Now to create the Board class, we could create a simple

class with a 2D array of Cell objects and a similar

constructor

from dataclasses import dataclass
from typing import List

@dataclass
class Board:
 cells: List[List[Cell]]

21/11/2023, 11:50 TicTacToe - Data Models - HackMD

https://hackmd.io/CuYqHUf3SeSQI980xTS-Rw?view 5/20

The typing module was introduced in Python 3.5. It

provides runtime support for type hints. The typing
module defines a number of aliases for common types.

For example, List is an alias for list , Dict is an alias

for dict , Tuple is an alias for tuple , etc. The typing
module also defines a number of generic types. For

example, List[int] is a list of integers, Dict[str,
int] is a dictionary with string keys and integer values.

However, we can do better. Instead of having a constructor

which accepts a 2D array of Cell objects, we can have a

constructor which accepts the size and then constructs the

2D array of Cell objects. To do this, we can use the

 __post_init__ method. The __post_init__ method is

called after the __init__ method. The __post_init__
method is used to perform any additional initialisation. Also,

we will use the field function from the dataclasses
module to provide metadata about the attributes of the

class. Here we will use the init parameter to specify that

the attribute should not be included in the __init__
method. This is because we will be initialising the attribute in

the __post_init__ method.

from dataclasses import dataclass, field
from typing import List

@dataclass
class Board:
 cells: List[List[Cell]] = field(init=False)

 def __post_init__(self):
 self.cells = self.initialize_cells()

 def initialize_cells(self) -> List[List[Cell]]:
 cells = []
 for row in range(self.size):
 row_cells = [Cell(row, column) for column in range(self.size)]
 cells.append(row_cells)
 return cells

The Player classes

Now let us create the player classes as below:

«abstract»

Player

-Symbol symbol

HumanPlayer

-String name

-String email

-String profileImage

BotPlayer

-Level difficultyLeve

«enumeration»

Level

EASY

MEDIUM

HARD

21/11/2023, 11:50 TicTacToe - Data Models - HackMD

https://hackmd.io/CuYqHUf3SeSQI980xTS-Rw?view 6/20

Let’s start with the Player class. The Player class is an
abstract class. To create an abstract class in Python, we use

the ABC class from the abc module. The ABC metaclass
is used to create abstract base classes. An abstract base

class is a class that cannot be instantiated and has abstract

methods that must be implemented by its subclasses. The

 ABC metaclass is similar to the abstract keyword in Java.

from abc import ABC

class Player(ABC):
 symbol: Symbol

The HumanPlayer class has three attributes - name ,
 email and profile_image .
from dataclasses import dataclass

@dataclass
class HumanPlayer(Player):
 name: str
 email: str
 profile_image: str

The profile image can cause memory issues since one

player can have multiple games and for each game a new

object of the HumanPlayer class will be created. To avoid

this, we can use the flyweight pattern.

The flyweight pattern is a structural design pattern that

allows sharing objects to support large numbers of fine-

grained objects efficiently. It is used to minimize memory

usage or computational expenses by sharing as much as

possible with similar objects. To implement the flyweight

pattern, we divide the class into two parts - the intrinsic

state and the extrinsic state. The intrinsic state is the state

that is shared across objects. The extrinsic state is the state

that is unique to each object. The intrinsic state is stored in a

flyweight object and the extrinsic state is stored in a context

object. The context object is passed to the flyweight object

when the flyweight object is created.

So we have the User class as the flyweight object and the

 HumanPlayer class as the context object. The User class
will contain the intrinsic state and the HumanPlayer class
will contain the extrinsic state.

21/11/2023, 11:50 TicTacToe - Data Models - HackMD

https://hackmd.io/CuYqHUf3SeSQI980xTS-Rw?view 7/20

from dataclasses import dataclass

@dataclass
class User:
 name: str
 email: str
 profile_image: str

@dataclass
class HumanPlayer(Player):
 user: User

The BotPlayer class has one attribute -

 difficulty_level . Let us create the Level enum class

first.

from enum import Enum

class Level(Enum):
 EASY = 1
 MEDIUM = 2
 HARD = 3

Now let us create the BotPlayer class.
from dataclasses import dataclass

@dataclass
class BotPlayer(Player):
 difficulty_level: Level

Conclusion

We looked at the different ways of defining data models in

Python i.e. using standard classes and dataclasses. We used

the dataclasses module to create the data models for the

tic-tac-toe game. The next time we will look at adding

behavior to the data models using methods.

