
21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 1/25

Parking lot management system - Class
design and REST APIs

Parking lot management system - Class design and

REST APIs

Three-layered architecture

Data models

Enums

Base class

Structural classes

Gate classes

Ticket classes

REST APIs

What are APIs?

What are REST APIs?

HTTP Verbs

REST API design

A three-layered example

Controller layer

Service layer

Repository layer

Conclusion

Three-layered architecture

The three layered architecture is a popular architecture for

designing software systems. It is also commonly referred to

as the MVC architecture, or specifically the MVT

architecture in the case of Django. The three layers are:

�. Controller layer - This layer is responsible for handling

the user requests and returning the response. It is also

responsible for request level validations and

transformations.

�. Service layer - This layer contains the business logic of

the application. In MVC, the service layer is also referred

to as the Model layer.
Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 2/25

�. Repository layer - This layer is responsible for

interacting with the database and translating the

database objects to service objects and vice versa.

request
query

response
User Controller Service Repository Database

The advantages of this architecture are:

�. Separation of concerns - Each layer is responsible for a

specific set of functionalities. This makes the code more

modular and easier to maintain.

�. Code reusability - The code in each layer can be reused

in other layers. For example, the service layer can be

reused in other classes that need the same business

logic.

�. Testability - The code in each layer can be tested

independently. This makes it easier to write unit tests for

the code.

�. Extensibility - The code in each layer can be extended

independently. For example, if we want to change the

database, we can do so without affecting the other layers.

Note: The three layered architecture is a very popular

architecture for designing software systems. However, it

is not the only architecture. There are other architectures

like the Hexagonal architecture and the Clean

architecture. The idea behind all these architectures is

the same - separation of concerns. The difference is in

the way the layers are separated.

ou can read more about them here (https://www.freecodecamp.org/news/a-

quick-introduction-to-clean-architecture-990c014448d2/) and here

(https://reflectoring.io/spring-hexagonal/).

Data models

Before we start implementing the different layers, let us

implement the data models that we will be using in the

application. This is the class diagram we came up with in the

previous session:

https://www.freecodecamp.org/news/a-quick-introduction-to-clean-architecture-990c014448d2/
https://www.freecodecamp.org/news/a-quick-introduction-to-clean-architecture-990c014448d2/
https://reflectoring.io/spring-hexagonal/
https://reflectoring.io/spring-hexagonal/

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 3/25

1

*

entryGates

1

*

exitGates

1

*

1

*

1

1

generated for

*

1

generated for
*

1

generated at

*

1

generated by
*

1

generated for

1

1

paid by1

1

*

1

*

1

paid for

1

1

*

1

1

1

1

1

*

1

*

1

ParkingLot

+String name

+String address

+ParkingFloor[] parkingFloor

+ParkingGate[] entryGate

+ParkingGate[] exitGate

ParkingFloor

+int floorNumber

+ParkingSpot[] parkingSpot

+PaymentCounter paymentCounte

PaymentCounter

+int counterNumber

ParkingSpot

+int spotNumber

+ParkingSpotType spotType

+ParkingSpotStatus statu

ParkingTicket

+String ticketId

+ParkingSpot parkingSpo

+Date entryTime

+Vehicle vehicle

+ParkingGate entryGate

+ParkingAttendant entryOperato

Invoice

+String invoiceId

+Date exitTime

+ParkingTicket parkingTicke

+double amount

+Payment payment

Payment

+double amount

+ParkingTicket ticke

+PaymentType type

+PaymentStatus status

+Date time

Vehicle

+String licensePlate

+VehicleType vehicleType

ParkingAttendant

+String name

+String email

«abstract»

ParkingGate

+ParkingAttendant attendan

EntryGate

+DisplayBoard displayBoard

ExitGate

+PaymentCounter paymentCounte

«enumeration»

ParkingSpotType

Small,

Medium,

Large,

«enumeration»

ParkingSpotStatus

Occupied,

Free,

OutOfOrder,

«enumeration»

PaymentType

Cash,

CreditCard,

UPI,

«enumeration»

PaymentStatus

Done,

Pending,

«enumeration»

VehicleType

Car,

Truck,

Bus,

Bike,

Scooter,

«enumeration»

ParkingGateType

Entry,

Exit,

DisplayBoard

Enums

Let us start by quickly implementing all the enums in the

class diagram.

from enum import Enum

class ParkingSpotType(Enum):
 SMALL = 1
 MEDIUM = 2
 LARGE = 3

class ParkingSpotStatus(Enum):
 OCCUPIED = 1
 FREE = 2
 OUT_OF_ORDER = 3

class PaymentType(Enum):
 CASH = 1
 CREDIT_CARD = 2
 UPI = 3

class PaymentStatus(Enum):
 DONE = 1
 PENDING = 2

class VehicleType(Enum):
 CAR = 1
 TRUCK = 2
 BUS = 3
 BIKE = 4
 SCOOTER = 5

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 4/25

Above we used the Enum class from the enum module to

implement the enums. The right hand side of the =
operator is the value of the enum. The left hand side is the

name of the enum. For example, SMALL is the name of the

enum and 1 is the value of the enum. We can access the

value of the enum using the value attribute. For example,
 ParkingSpotType.SMALL.value will return 1 and
 ParkingSpotType.SMALL.name will return SMALL .

Base class

A lot of the times, there are multiple fields that are

duplicated across different classes. For example, the id
field is present in almost all the classes. Similarly, the

 created_at and updated_at fields are also present in

most of the classes. It is a common practice to create a base

class that contains all these fields and then inherit from this

base class in all the other classes. Let us create a base class

called BaseModel that contains the id , created_at and
 updated_at fields.
from datetime import datetime
from dataclasses import dataclass
from abc import ABC

@dataclass
class BaseModel(ABC):
 id: int
 created_at: datetime
 updated_at: datetime

Structural classes

We will now create some important classes in the class

diagram. Let us start with the structural classes i.e.

 ParkingLot , ParkingFloor and ParkingSpot .

ParkingLot

+String name

+String address

+ParkingFloor[] parkingFloor

+ParkingGate[] entryGate

+ParkingGate[] exitGate

ParkingFloor

+int floorNumber

+ParkingSpot[] parkingSpot

+PaymentCounter paymentCounte

ParkingSpot

+int spotNumber

+ParkingSpotType spotType

+ParkingSpotStatus statu

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 5/25

from dataclasses import dataclass, field
from typing import List

@dataclass
class ParkingLot(BaseModel):
 name: str
 address: str
 parking_floors: List[ParkingFloor] = field(default_factory=list)
 entry_gates: List[ParkingGate] = field(default_factory=list)
 exit_gates: List[ParkingGate] = field(default_factory=list)
 display_board: DisplayBoard

@dataclass
class ParkingFloor(BaseModel):
 floor_number: int
 parking_spots: List[ParkingSpot] = field(default_factory=list)
 payment_counter: PaymentCounter
 display_board: DisplayBoard

@dataclass
class ParkingSpot(BaseModel):
 spot_number: int
 spot_type: ParkingSpotType
 status: ParkingSpotStatus

We have used the dataclass decorator from the

 dataclasses module to create the classes. The field
decorator is used to provide default values for the fields. The

 default_factory argument is used to provide a callable

that will be called to create the default value. In the above

example, we have used the list class as the default

factory. This means that the default value of the field will be

an empty list. We have also used the typing module to

specify the type of the fields. This is not mandatory, but it is

a good practice to specify the types of the fields.

Gate classes

We can create a single Gate class to represent both the

entry and exit gates. However, there are some differences

between the two. For example, the entry gate has a display

board that displays the number of free spots in the parking

lot. The exit gate does not have a display board. Similarly,

the exit gate has a payment counter where the customer can

pay the parking fee. The entry gate does not have a payment

counter. So it makes sense to create separate classes for the

entry and exit gates, else we will end up with a lot of if
statements in the Gate class due to null values.

We will first create a base class called ParkingGate and
then inherit from this class to create the EntryGate and
 ExitGate classes.

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 6/25

«abstract»

ParkingGate

+ParkingAttendant attendan

EntryGate

+DisplayBoard displayBoard

ExitGate

+PaymentCounter paymentCounte

from dataclasses import dataclass
from abc import ABC

@dataclass
class ParkingGate(BaseModel, ABC):
 attendant: ParkingAttendant

Since both the entry and exit gates will have a parking

attendant, we keep it in the base class. We have also used

the ABC class from the abc module to make the

 ParkingGate class an abstract class. This means that we

cannot create an instance of the ParkingGate class. We
can only create instances of the EntryGate and ExitGate
classes.

@dataclass
class EntryGate(ParkingGate):
 display_board: DisplayBoard

@dataclass
class ExitGate(ParkingGate):
 payment_counter: PaymentCounter

Ticket classes

The ParkingTicket class represents the ticket that is

generated when a vehicle enters the parking lot. The

 Invoice class represents the invoice that is generated

when a vehicle exits the parking lot. These are extremely

important classes in the system. Let us implement them.

ParkingTicket

+ParkingSpot parkingSpo

+Date entryTime

+Vehicle vehicle

+ParkingGate entryGate

Invoice

+Date exitTime

+ParkingTicket parkingTicke

+double amount

+Payment payment

Payment

+double amount

+ParkingTicket ticke

+PaymentType type

+PaymentStatus status

+Date time

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 7/25

from dataclasses import dataclass
from datetime import datetime

@dataclass
class ParkingTicket(BaseModel):
 parking_spot: ParkingSpot
 entry_time: datetime
 vehicle: Vehicle
 entry_gate: ParkingGate

@dataclass
class Invoice(BaseModel):
 exit_time: datetime
 exit_gate: ParkingGate
 parking_ticket: ParkingTicket
 amount: float
 payment: Payment

@dataclass
class Payment(BaseModel):
 amount: float
 payment_type: PaymentType
 status: PaymentStatus
 time: datetime

If you look closely at the invoice class, you will notice that it

has a payment field of type Payment . The cardinality of

this relationship is 1:1 . This means that a single payment

can be associated with only one invoice and vice versa.

However, a real system that accepts payments need to

accommodate partial payments. For example, if the parking

fee is 100 rupees, the customer might pay 50 rupees in cash

and 50 rupees using a credit card. In this case, we will have

two payments for a single invoice. To accommodate this, we

can change the cardinality of the relationship to 1:N .
@dataclass
class Invoice(BaseModel):
 exit_time: datetime
 exit_gate: ParkingGate
 parking_ticket: ParkingTicket
 amount: float
 payments: List[Payment] = field(default_factory=list)

REST APIs

What are APIs?

An API is an Application Programming Interface. It is a

set of functions that allows one application to interact with

another application. For example, the Google Maps API

allows us to interact with the Google Maps application. We

can use the Google Maps API to get the directions from one

place to another. We can also use the Google Maps API to

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 8/25

get the distance between two places. Similarly, the Twitter

API allows us to interact with the Twitter application. We can

use the Twitter API to post tweets, follow other users, etc.

An API allows us to call the functions of another

application over the internet.

What are REST APIs?

REST stands for REpresentational State Transfer. It is an

architectural style for designing APIs. It is just a set of

guidelines that we can follow to design our APIs. The REST

architectural style is based on the following principles:

�. Client-server architecture - The client and the server

are two separate applications. The client is responsible

for sending the requests and the server is responsible for

sending the responses.

�. Stateless - The server does not store any state. This

means that the server does not store any information

about the client. Each request is independent of the other

requests.

�. Resource-based - The server exposes resources to the

client. A resource is an object that can be accessed using

a unique identifier. For example, a user is a resource. We

can access a user using the user id. A user can have

multiple addresses. An address is also a resource. We can

access an address using the address id.

To understand the resource-based principle, let us take see

how would we create APIs over the parking spot data model

that we created in the previous session. First thing we need

to realise is the type of operations that we can perform on

the parking spot data model. We can perform the following

operations:

�. Create a parking lot - The user will send a request to

create a parking lot. The request will contain the name

and address of the parking lot. The server will create a

new parking lot and return the id of the parking lot.

�. Read a parking lot - The user will send a request to read

a parking lot. The request will contain the id of the parking

lot. The server will return the details of the parking lot.

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 9/25

�. Update a parking lot

�. Delete a parking lot

The above operations are called CRUD operations. CRUD

stands for Create, Read, Update and Delete. These are the

four basic operations that we can perform on any data

model. We can create, read, update and delete a parking lot.

We can also create, read, update and delete operations for

the other data models.

HTTP Verbs

The HTTP protocol defines a set of verbs that we can use to

perform the CRUD operations. The HTTP verbs are:

�. POST - This verb is used to create a resource. For

example, we can use the POST verb to create a parking

lot.

�. GET - This verb is used to read a resource. For example,

we can use the GET verb to read a parking lot.

�. PUT - This verb is used to update a resource. For

example, we can use the PUT verb to update a parking

lot.

�. DELETE - This verb is used to delete a resource. For

example, we can use the DELETE verb to delete a parking

lot.

�. PATCH - This verb is used to update a part of a resource.

For example, we can use the PATCH verb to update the

name of a parking lot. This is a partial update operation.

REST API design

Let us now design the CRUD APIs for a parking lot. Apart

from the verbs, we also need to know which URL to use for

each operation. The URL is called the endpoint. The CRUD

APIs for a parking lot will be:

�. Create a parking lot - POST /parking-lot

�. Read a parking lot - GET /parking-lot/{id}

�. Update a parking lot - PUT /parking-lot/{id}

�. Delete a parking lot - DELETE /parking-lot/{id}

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 10/25

Apart from the POST API, all the other APIs have an id in the

endpoint. This is because we need to specify the id of the

parking lot that we want to read, update or delete. The id is

passed as a path parameter and is a part of the URL. The

POST API does not have an id in the endpoint because we

are creating a new parking lot, and the server will generate

the id for the parking lot.

A three-layered example

In this session, we will not be creating fully fledged REST

APIs. We will instead set up the three different layers for

creating REST APIs. Let us start with creating the parking lot

APIs.

Controller layer

The controller layer is responsible for handling the user

requests and returning the response. It is also responsible

for request level validations and transformations. Let us

create a controller class called ParkingLotController
that will handle the parking lot requests.

class ParkingLotController:
 def create_parking_lot(self, name: str, address: str) -> ParkingLot:
 pass

 def get_parking_lot(self, id: int) -> ParkingLot:
 pass

 def update_parking_lot(self, id: int, name: str, address: str) -> None:
 pass

 def delete_parking_lot(self, id: int) -> None:
 pass

The above is the skeleton of a controller class. It contains

the four CRUD methods. To make the POST method more

extensible, we can create a data transfer object (DTO) called

 CreateParkingLotRequest that will contain the name and

address of the parking lot.

If we need to add more fields to the request, we can add

them to the DTO.

from dataclasses import dataclass

@dataclass
class CreateParkingLotRequest:
 name: str
 address: str

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 11/25

We can also validate if the name and address are not empty

strings. Request validation is one of the additional

responsibilities of the controller layer.

class ParkingLotController:
 def create_parking_lot(self, request: CreateParkingLotRequest) -> ParkingLot:
 self.validate_create_request(request)
 pass

 def validate_create_request(self, request: CreateParkingLotRequest) -> None:
 if not request.name:
 raise ValueError("Name cannot be empty")

 if not request.address:
 raise ValueError("Address cannot be empty")

It is also preferred to convert the request to a domain object

before passing it to the service layer. This is called request

transformation and is also the other additional

responsibility of the controller layer. Weʼll define a simple

method in the controller itself to convert the request to a

domain object.

class ParkingLotController:
 def create_parking_lot(self, request: CreateParkingLotRequest) -> ParkingLot:
 self.validate_create_request(request)
 parking_lot = self.to_parking_lot(request)
 pass

 def to_parking_lot(self, request: CreateParkingLotRequest) -> ParkingLot:
 return ParkingLot(
 name=request.name,
 address=request.address,
)

Now that we have the parking lot object, we can pass it to

the service layer to create the parking lot. We will create a

service class called ParkingLotService that will contain
the business logic of the application.

class ParkingLotController:

 def __init__(self):
 self.parking_lot_service = ParkingLotService()

 def create_parking_lot(self, request: CreateParkingLotRequest) -> ParkingLot:
 self.validate_create_request(request)
 parking_lot = self.to_parking_lot(request)
 return self.parking_lot_service.create_parking_lot(parking_lot)

Service layer

The service layer is responsible for the business logic of the

application. It is also responsible for calling the repository

layer to interact with the database. Let us create a service

class called ParkingLotService that will contain the

business logic of the application.

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 12/25

class ParkingLotService:
 def create_parking_lot(self, parking_lot: ParkingLot) -> ParkingLot:
 pass

 def get_parking_lot(self, id: int) -> ParkingLot:
 pass

 def update_parking_lot(self, id: int, name: str, address: str) -> None:
 pass

 def delete_parking_lot(self, id: int) -> None:
 pass

For now our service class is going to be extremely simple, it

will just call the repository layer to create, read, update and

delete the parking lot. We will create a repository class

called ParkingLotRepository that will interact with the

database.

class ParkingLotService:
 def __init__(self):
 self.parking_lot_repository = ParkingLotRepository()

 def create_parking_lot(self, parking_lot: ParkingLot) -> ParkingLot:
 return self.parking_lot_repository.create_parking_lot(parking_lot)

 def get_parking_lot(self, id: int) -> ParkingLot:
 return self.parking_lot_repository.get_parking_lot(id)

Repository layer

The repository layer is responsible for interacting with the

database and translating the database objects to service

objects and vice versa. Let us create a repository class

called ParkingLotRepository that will interact with the

database. For this session, our database is simply going to

be a list of parking lots in memory.

class ParkingLotRepository:
 def __init__(self):
 self.parking_lots = []

 def create_parking_lot(self, parking_lot: ParkingLot) -> ParkingLot:
 parking_lot.id = len(self.parking_lots) + 1
 self.parking_lots.append(parking_lot)
 return parking_lot

 def get_parking_lot(self, id: int) -> ParkingLot:
 for parking_lot in self.parking_lots:
 if parking_lot.id == id:
 return parking_lot
 return None

Conclusion

In this session, we learnt about the three layered

architecture and how to design REST APIs. We also

implemented the three layers for the parking lot

21/11/2023, 12:14 Parking lot management system - Class design and REST APIs - HackMD

https://hackmd.io/bYcHuDtFTKyxAGec0Ke6Sg 13/25

management system. In the next session, we will implement

the transactional APIs for the parking lot management

system.

