
21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 1/24

Design a parking lot

Design a parking lot

Requirements gathering

Requirements

Use case diagrams

Actors

Use cases

Actor 1

Actor 2

Actor 3

API design

Admin APIs

Parking lot APIs

Parking spot APIs

Parking attendant APIs

Check empty slots

Issue a ticket

Collect payment

Checkout

Class diagram

A parking lot or car park is a dedicated cleared area that

is intended for parking vehicles. In most countries where

cars are a major mode of transportation, parking lots are

a feature of every city and suburban area. Shopping

malls, sports stadiums, megachurches, and similar

venues often feature parking lots over large areas

Reference (https://github.com/tssovi/grokking-the-object-oriented-design-

interview/blob/master/object-oriented-design-case-studies/design-a-parking-lot.md)

Privacy - Terms

https://github.com/tssovi/grokking-the-object-oriented-design-interview/blob/master/object-oriented-design-case-studies/design-a-parking-lot.md
https://github.com/tssovi/grokking-the-object-oriented-design-interview/blob/master/object-oriented-design-case-studies/design-a-parking-lot.md
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 2/24

Parking lot is an open area designated for parking cars.

We will design a parking lot where a certain number of

cars can be parked for a certain amount of time. The

parking lot can have multiple floors where each floor

carries multiple slots. Each slot can have a single vehicle

parked in it.

Reference (https://medium.com/double-pointer/system-design-interview-parking-lot-

system-ff2c58167651)

Requirements gathering

What are some questions you would ask to gather

requirements?

1. Can a parking lot have multiple floors?
2. Can a parking lot have multiple entrances?
3. Can a parking lot have multiple exits?
4. Can a parking lot have multiple types of vehicles?
5. Can we park any type of vehicle in any slot?
6. How do we get a ticket?
7. How do we know if a slot is empty?
8. How are we allocated a slot?
9. How do we pay for parking?
10. What are the multiple ways to pay for parking?

https://medium.com/double-pointer/system-design-interview-parking-lot-system-ff2c58167651
https://medium.com/double-pointer/system-design-interview-parking-lot-system-ff2c58167651

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 3/24

Requirements

What will be 10 requirements of the system, according to

you?

Do not worry about the correctness of the requirements, just

write down whatever comes to your mind.

Your job is not to generate the requirements, but get better

at understanding problem statements and anticipating the

functionalities your application might need.

Build an online parking lot management system that can

support the following requirements:

Should have multiple floors.

Multiple entries and exit points.

A person has to collect a ticket at entry and pay at or

before exit.

Pay at:

Exit counter (Cash to the parking attendant)

Dedicated automated booth on each floor

Online

Pay via:

Cash

Credit Card

UPI

Allow entry for a vehicle if a slot is available for it. Show

on the display at entry if a slot is not available.

Parking Spots of 3 types:

Large

Medium

Small

A car can only be parked at its slot. Not on any other

(even larger).

A display on each floor with the status of that floor.

Fees calculated based on per hour price: e.g. 50 rs for the

first hour, then 80 rs per extra hour.

Small - 50, 80

Medium - 80, 100

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 4/24

Large - 100, 120

Use case diagrams

Are the requirements clear enough to define use cases?

If not, try to think of the actors and their interactions with the

system.

Actors

What would be the actors in this system?

�. Customer

�. Parking Attendant, Operator

�. Admin

Use cases

What would be the use cases i.e. the interactions between

the actors and the system?

A���� 1

Name of the actor - Admin
Use cases: CRUD
�. Create a parking lot

�. Create a parking floor

�. Add new parking spots

�. Update status of a parking spot

A���� 2

Name of the actor - Parking attendant
Use cases:

�. Check empty slots

�. Issue a ticket - Allocating a slot

�. Collect payment

�. Checkout - Has the user paid?

A���� 3

Name of the actor - Customer
Use cases:

�. Pay - Pay online , Pay at exit gate

�. Check status

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 5/24

Add more actors and their use cases as needed.
FastAndCalm

Add a parking lot

Add a parking floor

Add a parking spot

Update status of parking spot

Pay

Pay Online

Pay Cash

Check spot's status

Check empty slots

Issue a ticket

Collect payment

Checkout

Allocate a slot

CheckPaymentStatus

ParkingAttendant

Customer

Admin

extends

extends

includes

includes

API design

What will be some APIs that you would design for this

system?

Look at the use cases and try to design APIs for each of

them.

You can simply write the APIs in the following format:

 API name - HTTP method - URL - ?Request body - ?
Response body

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 6/24

You could also use a tool like Swagger (https://swagger.io/) to design

the APIs or follow this (https://github.com/jamescooke/restapidocs) repository

for a simple way to use Markdown to structure your API

documentation.

Admin APIs

All the various use cases are simple CRUD operations. We

can design the following APIs for the admin:

P������ ��� API�

 createParkingLot - POST /parking-lot - Request

body: ParkingLot

 getParkingLot - GET /parking-lot/{id} - Response

body: ParkingLot

 getAllParkingLots - GET /parking-lot - Response

body: List<ParkingLot>

 updateParkingLot - PUT /parking-lot/{id} -
Request body: ParkingLot

 deleteParkingLot - DELETE /parking-lot/{id}
Similarly, we can design APIs for ParkingFloor ,
 ParkingSpot .

P������ ���� API�

 createParkingSpot - POST /parking-spot - Request

body: ParkingSpot

 getParkingSpot - GET /parking-spot/{id} -
Response body: ParkingSpot

 getAllParkingSpots - GET /parking-spot -
Response body: List<ParkingSpot>

 updateParkingSpot - PUT /parking-spot/{id} -
Request body: ParkingSpot

 deleteParkingSpot - DELETE /parking-spot/{id}
You might also want an API to Update status of a
parking spot . This can be done by using the existing

 updateParkingSpot API or by creating a new API that only

updates the status of the parking spot.

 updateParkingSpotStatus - PUT /parking-
spot/{id}/status - Request body:

https://swagger.io/
https://github.com/jamescooke/restapidocs

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 7/24

 ParkingSpotStatus

 getParkingSpotStatus - GET /parking-
spot/{id}/status - Response body:

 ParkingSpotStatus

Parking attendant APIs

Use cases:

�. Check empty slots

�. Issue a ticket - Allocating a slot

�. Collect payment

�. Checkout - Has the user paid?

C��� ���� �����

Let us look at the various requirements for a parking spot:

CRUD on parking spots

Get all parking spots

Get all available parking spots

We can augment our current getAllParkingSpots API by

adding a query parameter to filter the parking spots based

on their status. This will allow us to get all the available

parking spots as well.

Get all parking spots

 getAllParkingSpots - GET /parking-spot -
Response body: List<ParkingSpot>

Get all available parking spots

 getAllParkingSpots - GET /parking-spot?
status=AVAILABLE - Response body:

 List<ParkingSpot>
Get all occupied parking spots

 getAllParkingSpots - GET /parking-spot?
status=OCCUPIED - Response body:

 List<ParkingSpot>

I��� � �����

 issueTicket - POST /ticket - Request body:

 TicketRequest - Response body: Ticket

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 8/24

We might not want to use the current Ticket class for the
request body since it contains a lot of information that is

either not required or is not available at the time of ticket

generation. We can create a new class TicketRequest that
contains only the required information.

TicketRequest

+String licensePlate

+VehicleType vehicleType

Collect payment

 collectPayment - POST /payment - Request body:

 PaymentRequest - Response body: Payment
PaymentRequest:

PaymentRequest

+String ticketId

+PaymentType paymentType

Checkout

 checkout - POST /checkout - Request body:

 CheckoutRequest - Response body:

 CheckoutResponse
CheckoutRequest:

CheckoutRequest

+String ticketId

+Date checkoutTime

+String exitGateId

Class diagram

What will be the major classes and their attributes?

ParkingLot

Name

Address

ParkingFloors

Entry Gates

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 9/24

Exit Gates

ParkingFloor

Floor Number

ParkingSpots

ParkingSpot

Spot Number

Spot Type - Large, Medium, Small

Status - Occupied, Free, Out of order

ParkingTicket

Ticket ID

ParkingSpot

Entry Time

Vehicle

Entry Gate

Entry Operator

Invoice

Invoice ID

Exit Time

ParkingTicket

Amount

Payment

Payment Status

Payment

Amount

Ticket

Type - Cash, Credit Card, UPI

Status - Done, Pending

Time

Vehicle

License Plate

Vehicle Type - Car, Truck, Bus, Bike, Scooter

ParkingAttendant

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 10/24

Name

Email

List down the cardinalities of the relationships between the

classes.

 ParkingLot - ParkingFloor - One to many

 ParkingLot - ParkingGate - entryGates - One to

many

 ParkingLot - ParkingGate - exitGates - One to

many

 ParkingFloor - ParkingSpot - One to many

 ParkingGate - ParkingAttendant - currentGate -
One to one

 ParkingSpot - ParkingTicket - One to many

 ParkingTicket - Invoice - One to one

 ParkingTicket - Vehicle - Many to one

 ParkingTicket - ParkingSpot - Many to one

 Payment - ParkingTicket - One to one

Draw the class diagram.

21/11/2023, 11:56 Design a parking lot - HackMD

https://hackmd.io/4XtVuOXYSmCuWrQLsToIfg?view 11/24

1

*

entryGates

1

*
exitGates

1

*

1

*

1

1

generated for

*

1

generated for
*

1

generated at

*

1

generated by

*

1

generated for

1

1

paid by
1

1

*

1

*

1

paid for

1

1

*

1

*

1

*

1

*

1

*

1

ParkingLot

+String name

+String address

+ParkingFloor[] parkingFloor

+ParkingGate[] entryGate

+ParkingGate[] exitGate

ParkingFloor

+int floorNumber

+ParkingSpot[] parkingSpot

+PaymentCounter paymentCounte

PaymentCounter

+int counterNumber

ParkingSpot

+int spotNumber

+ParkingSpotType spotType

+ParkingSpotStatus statu

ParkingTicket

+String ticketId

+ParkingSpot parkingSpo

+Date entryTime

+Vehicle vehicle

+ParkingGate entryGate

+ParkingAttendant entryOperato

Invoice

+String invoiceId

+Date exitTime

+ParkingTicket parkingTicke

+double amount

+Payment payment

Payment

+double amount

+ParkingTicket ticke

+PaymentType type

+PaymentStatus status

+Date time

Vehicle

+String licensePlate

+VehicleType vehicleType

ParkingAttendant

+String name

+String email

ParkingGate

+String gateId

+ParkingGateType gateType

+ParkingAttendant attendan

«enumeration»

ParkingSpotType

Small,

Medium,

Large,

«enumeration»

ParkingSpotStatus

Occupied,

Free,

OutOfOrder,

«enumeration»

PaymentType

Cash,

CreditCard,

UPI,

«enumeration»

PaymentStatus

Done,

Pending,

«enumeration»

VehicleType

Car,

Truck,

Bus,

Bike,

Scooter,

«enumeration»

ParkingGateType

Entry,

Exit,

Look for differences between your class diagram and the

one in the solution. List them down below.

1.
2.
3.
4.
5.

