
BookMyShow - Models
• BookMyShow - Models

◦ Classes
◦ Setup

▪ Django REST
▪ MySQL
▪ Create a Django project
▪ Connect to MySQL
▪ Database migrations
▪ Run the server

◦ Models
▪ User
▪ Enums
▪ Structural entities (City, Theater, Hall, Seat)
▪ Movie and Show
▪ ShowSeat
▪ Booking and Payment
▪ Finishing up

◦ Conclusion

Classes
In this series, we are going to be creating end to end REST APIs for a movie ticket booking
system such as BookMyShow.
We are going to be using Django REST Framework for creating the APIs and MySQL for the
database. More on that later.

Setup

Django REST
A web framework is a library that makes web development faster and easier by providing
common patterns for building

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

reliable, scalable and maintainable applications. Django is a high-level Python Web framework
that encourages rapid
development and clean, pragmatic design. Django REST Framework is a powerful and flexible
toolkit for building Web APIs.
It provides out of the box support for serializing and deserializing data to and from JSON,
validation, authentication, permissions, and much more.

To get started, we will create a virtual environment and install Django REST Framework in it.

$ python -m venv bms

$ source bms/bin/activate

$ pip install django djangorestframework

MySQL
Before we get started, we need to install MySQL. You can download it from here or use
homebrew to install it.

$ brew install mysql

You also need to install the MySQL client for Python.

$ pip install mysqlclient

So the complete pip command would be:

$ pip install django djangorestframework mysqlclient

Create a Django project
Django is structured as a set of applications that are installed into a single project. To create a
project, run the following command:

$ django-admin startproject book_my_show

https://dev.mysql.com/downloads/mysql/

The above command will create a directory called book_my_show and boilerplate code for a
Django project inside it.
The folder structure will look like this:

book_my_show

│ manage.py

├── book_my_show1

│ │ asgi.py

│ │ __init__.py

│ │ settings.py

│ │ urls.py

│ │ wsgi.py

We will be looking at each file in detail later.

Connect to MySQL
We need to create a database in MySQL and connect our Django project to it. To do that,
open the MySQL shell:

$ mysql -u root -p

You will be prompted to enter the password for the root user. Enter the password and you will
be inside the MySQL shell.

mysql> CREATE DATABASE book_my_show;

This will create a database called book_my_show . Now, we need to connect our Django
project to this database. To do that, open the settings.py file inside the book_my_show

folder and update the DATABASES variable as follows:

your_project_name/settings.py

DATABASES = {

'default': {

'ENGINE': 'django.db.backends.mysql',

'NAME': 'your_database_name',

'USER': 'your_database_user',

'PASSWORD': 'your_database_password',

'HOST': 'localhost',

'PORT': '3306',

}

}

Database migrations
Django comes with a built-in database migration system that lets you create, modify and
delete database tables and their fields. To create the initial tables in the database, run the
following command:

$ python manage.py migrate

The above commands will create the tables in the database. You can verify this by opening
the MySQL shell and running the following command:

mysql> USE book_my_show;

mysql> SHOW TABLES;

Run the server
Before we run the server add the following line to the settings.py file:

your_project_name/settings.py

INSTALLED_APPS = [

...

'book_my_show',

'rest_framework',

]

Now, run the following command to start the server:

$ python manage.py runserver

If you open the browser and go to http://localhost:8000 , you should see a generic
Django page.

Models
Let us now create the models for our application.

User
We will start with creating the User model. Create a file called models.py inside the
book_my_show folder and add the following code to it:

Django ORM

Django comes with a built-in ORM (Object Relational Mapper) that lets you interact with
the database using Python objects. An ORM is a library that lets you interact with a
relational database using an object-oriented paradigm. It lets you define classes that
map to database tables and lets you create, read, update and delete records in the
database using these classes. Django's ORM is called django.db.models . We will be
using this to create our models.

book_my_show/models.py

from django.db import models

class User(models.Model):

name = models.CharField(max_length=255)

email = models.EmailField(unique=True)

password = models.CharField(max_length=255)

The above code creates a User model with three fields - name , email and password .

• The name field is a CharField which is used to store strings.
• The email field is an EmailField which is used to store strings with email

validations. The unique=True argument specifies that the email field should be
unique i.e. no two users can have the same email address.

• The password field is also a CharField which is used to store passwords.

Now, we need to create the tables in the database for this model. To do that, run the
following command:

$ python manage.py makemigrations book_my_show

$ python manage.py migrate

The above commands will create the tables in the database. You can verify this by opening
the MySQL shell and running the SHOW TABLES command.

Enums
Let's see how to create enums in Django. Create a file called enums.py inside the
book_my_show folder and add the following code to it:

from django.db import models

class PaymentMode(models.TextChoices):

UPI = "UPI"

CREDIT_CARD = "CREDIT_CARD"

NET_BANKING = "NET_BANKING"

class PaymentStatus(models.TextChoices):

SUCCESS = "SUCCESS"

FAILED = "FAILED"

class BookingStatus(models.TextChoices):

BOOKED = "BOOKED"

CANCELLED = "CANCELLED"

class MovieFeatures(models.TextChoices):

THREE_D = "3D"

FOUR_D = "4D"

IMAX = "IMAX"

DOLBY = "DOLBY_ATMOS"

class SeatType(models.TextChoices):

GOLD = "GOLD"

DIAMOND = "DIAMOND"

PLATINUM = "PLATINUM"

Enums in Django

Django comes with a built-in enum class called django.db.models.TextChoices . We
will be using this to create our enums.
A sequence consisting itself of iterables of exactly two items
(e.g. [(A, B), (A, B) ...]) to use as choices for this field. If choices are given,

they’re enforced by model validation.

The first element in each tuple is the actual value to be set on the model, and the
second element, if given, is the human-readable name

Structural entities (City, Theater, Hall, Seat)
Let's now create the structural entities. Edit the file called models.py inside the
book_my_show folder and add the following code to it:

book_my_show/models.py

from django.db import models

class City(models.Model):

name = models.CharField(max_length=255)

class Theater(models.Model):

name = models.CharField(max_length=255)

address = models.CharField(max_length=255)

city = models.ForeignKey(City, on_delete=models.CASCADE)

class Hall(models.Model):

name = models.CharField(max_length=255)

theater = models.ForeignKey(Theater, on_delete=models.CASCADE)

class Seat(models.Model):

number = models.CharField(max_length=255)

seat_type = models.CharField(choices=SeatType.choices, max_length=50)

hall = models.ForeignKey(Hall, on_delete=models.CASCADE)

The above code creates the City , Theater , Hall and Seat models. Let's look at each of
them in detail:

• The City model has a name field which is a CharField used to store the name
of the city.

• The Theater model has the name and address fields which are CharField . It
also has a city field which is a ForeignKey used to store the city in which the
theater is located. A ForeignKey is used to create a many-to-one relationship
between two models. In this case, a city can have many theaters, but a theater
can only have one city. It also has a on_delete=models.CASCADE argument which
specifies that if a city is deleted, all the theaters in that city should also be
deleted.

• The Hall model has the name field which is a CharField . It also has a
theater field which is a ForeignKey used to store the theater in which the hall

is located. A theater can have many halls, but a hall can only have one theater.
• The Seat model has the number and seat_type fields which are CharField .

It also has a hall field which is a ForeignKey used to store the hall in which the
seat is located. A hall can have many seats, but a seat can only have one hall.

Movie and Show
Let's now create the Movie and Show models. Edit the file called models.py inside the
book_my_show folder and add the following code to it:

book_my_show/models.py

from django.db import models

class Language(models.Model):

name = models.CharField(max_length=50)

class Movie(models.Model):

name = models.CharField(max_length=255)

rating = models.IntegerField()

category = models.CharField(max_length=50)

languages = models.ManyToManyField(Language)

features = models.ManyToManyField(MovieFeature)

class Show(models.Model):

movie = models.ForeignKey(Movie, on_delete=models.CASCADE)

start_time = models.DateTimeField()

duration = models.IntegerField()

language = models.ForeignKey(Language, on_delete=models.CASCADE)

hall = models.ForeignKey(Hall, on_delete=models.CASCADE)

features = models.ManyToManyField(MovieFeature)

You see a new type of field here - ManyToManyField . A ManyToManyField is used to create
a many-to-many relationship between two models. In this case, a movie can have many
languages and a language can have many movies. Similarly, a movie can have many features
and a feature can have many movies. This will create a new table in the database called

book_my_show_movie_languages and book_my_show_movie_features which will store the
relationship between movies and languages and movies and features respectively.

ShowSeat
To store the booking status of a seat, we need to create a new model called ShowSeat .

book_my_show/models.py

from django.db import models

class ShowSeat(models.Model):

seat = models.ForeignKey(Seat, on_delete=models.CASCADE)

show = models.ForeignKey(Show, on_delete=models.CASCADE)

status = models.CharField(choices=SeatStatus.choices, max_length=50)

The status field is a CharField with choices. The choices argument specifies the list of
choices for this field. The choices argument can be a list of tuples or a list of lists. We are
using the enum we created earlier to specify the choices for this field.

Booking and Payment
Let's now create the Booking and Payment models. Edit the file called models.py inside
the book_my_show folder and add the following code to it:

book_my_show/models.py

from django.db import models

class Booking(models.Model):

amount = models.FloatField()

seats = models.ManyToManyField(ShowSeat)

show = models.ForeignKey(Show, on_delete=models.CASCADE)

user = models.ForeignKey(User, on_delete=models.CASCADE)

status = models.CharField(choices=BookingStatus.choices)

booked_at = models.DateTimeField(auto_now_add=True)

class Payment(models.Model):

amount = models.FloatField()

mode = models.CharField(choices=PaymentMode.choices)

status = models.CharField(choices=PaymentStatus.choices)

booking = models.ForeignKey(Booking, on_delete=models.CASCADE)

Finishing up
We have now created all the models for our application. Our models file now looks like:

book_my_show/models.py

from django.db import models

class User(models.Model):

name = models.CharField(max_length=255)

email = models.EmailField(unique=True)

password = models.CharField(max_length=255)

class City(models.Model):

name = models.CharField(max_length=255)

class Theater(models.Model):

name = models.CharField(max_length=255)

address = models.CharField(max_length=255)

city = models.ForeignKey(City, on_delete=models.CASCADE)

class Hall(models.Model):

name = models.CharField(max_length=255)

theater = models.ForeignKey(Theater, on_delete=models.CASCADE)

class Seat(models.Model):

number = models.CharField(max_length=255)

seat_type = models.CharField(max_length=255)

hall = models.ForeignKey(Hall, on_delete=models.CASCADE)

class Language(models.Model):

name = models.CharField(max_length=50)

class MovieFeatures(models.Model):

name = models.CharField(max_length=50)

class Movie(models.Model):

name = models.CharField(max_length=255)

rating = models.IntegerField()

category = models.CharField(max_length=50)

languages = models.ManyToManyField(Language)

features = models.ManyToManyField(

MovieFeatures, limit_choices_to=MovieFeature.choices

)

class Show(models.Model):

movie = models.ForeignKey(Movie, on_delete=models.CASCADE)

start_time = models.DateTimeField()

duration = models.IntegerField()

language = models.ForeignKey(Language, on_delete=models.CASCADE)

hall = models.ForeignKey(Hall, on_delete=models.CASCADE)

features = models.ManyToManyField(

MovieFeatures, limit_choices_to=MovieFeature.choices

)

class ShowSeat(models.Model):

seat = models.ForeignKey(Seat, on_delete=models.CASCADE)

show = models.ForeignKey(Show, on_delete=models.CASCADE)

status = models.CharField(choices=SeatStatus.choices, max_length=50)

class Booking(models.Model):

amount = models.FloatField()

seats = models.ManyToManyField(ShowSeat)

show = models.ForeignKey(Show, on_delete=models.CASCADE)

user = models.ForeignKey(User, on_delete=models.CASCADE)

status = models.CharField(choices=BookingStatus.choices, max_length=50)

booked_at = models.DateTimeField(auto_now_add=True)

class Payment(models.Model):

amount = models.FloatField()

mode = models.CharField(choices=PaymentMode.choices, max_length=50)

status = models.CharField(choices=PaymentStatus.choices, max_length=50)

booking = models.ForeignKey(Booking, on_delete=models.CASCADE)

To create the tables in the database, run the following commands:

$ python manage.py makemigrations

$ python manage.py migrate

Conclusion
In this session, we created the models for our book my show application using Django ORM.
We also looked at how to setup Django and MySQL for our application. In the next session,
we will look at how to create the REST APIs for our application using Django REST
Framework.

	BookMyShow - Models
	Classes
	Setup
	Django REST
	MySQL
	Create a Django project
	Connect to MySQL
	Database migrations
	Run the server

	Models
	User
	Enums
	Structural entities (City, Theater, Hall, Seat)
	Movie and Show
	ShowSeat
	Booking and Payment
	Finishing up

	Conclusion

