
SOLID principles - SRP and OCP

SOLID principles - SRP and OCP

Key terms

SOLID principles

Single responsibility principle

Open/closed principle

Single responsibility principle

Case study - Design a bird

Reasons to follow SRP

How/Where to spot violations of SRP?

Open/closed principle

Abstract classes and interfaces

Interface

Fixing OCP violation in the Bird class

Reading List

Key terms

SOLID principles

SOLID is a mnemonic acronym for five design principles intended to make object-

oriented designs more understandable, flexible, and maintainable.

Single responsibility principle

There should never be more than one reason for a class/code unit to change. Every

class should have only one responsibility.

Open/closed principle

Software entities (classes, modules, functions, etc.) should be open for extension,

but closed for modification.

Single responsibility principle

When designing our classes, we should aim to put related features together, so

whenever they tend to change they change for the same reason. And we should try to

separate features if they will change for different reasons.

The Single Responsibility Principle states that a class should do one thing, and therefore it

should have only a single reason to change. Only one potential change (database logic,

logging logic, and so on.) in the software’s specification should be able to affect the

specification of the class.

This means that if a class is a data container, like a Book class or a Student class, and it

has some fields regarding that entity, it should change only when we change the data

model.

Case study - Design a bird

To understand the SOLID principles, let us take the help of a bird. A bird is a living creature

that can fly, eat, and make a sound. How can we design a bird?

The simplest solution would be to create a Bird class with different attributes and
methods. A bird could have the following attributes:

Weight

Colour

Type

Size

BeakType

A bird would also exhibit the following behaviours:

Fly

Eat

Make a sound

Bird

+weight: int

+colour: string

+type: string

+size: string

+beakType: string

+fly()

+eat()

+makeSound()

The Bird class would look as follows:

from dataclasses import dataclass

@dataclass
class Bird:
 weight: int
 colour: str
 bird_type: str
 size: str
 beak_type: str

 def fly(self) -> None:
 pass

 def eat(self) -> None:
 pass

 def make_sound(self) -> None:
 pass

We are using a dataclass to create a class with attributes. A dataclass is a class

that is typically used to store data.

It provides a concise way to create classes that store data. The @dataclass
decorator automatically adds special methods such as __init__ , __repr__ ,
 __eq__ , etc. to the class.

You can read more about dataclasses here

(https://docs.python.org/3/library/dataclasses.html).

https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html

In order to understand the design further, let us try to implement the fly method.
Since each bird has a different method of flying, we would have to implement conditional

statements to check the type of the bird and then call the appropriate method.

def fly(self) -> None:
 if self.bird_type == "eagle":
 fly_like_eagle()
 elif self.bird_type == "penguin":
 fly_like_penguin()
 elif self.bird_type == "parrot":
 fly_like_parrot()

The above code exhibits the following problems:

 Readability - The code is not readable. It is difficult to understand what the code is

doing.

 Testing - It is difficult to test the code. We would have to test each type of bird

separately.

 Reusability - The code is not reusable. If we want to re-use the code of specific
type of bird, we would have to change the above code.

 Parallel development - The code is not parallel development friendly. If multiple
developers are working on the same code, they could face merge conflicts.

 Multiple reasons to change - The code has multiple reasons to change. If we want
to change the way a type of bird flies, we would have to change the code in the fly
method.

Reasons to follow SRP

Apart from overcoming the problems mentioned above, there are other reasons to follow

the SRP:

Maintainability - Smaller, well-organized classes are easier to search than monolithic

ones.

Ease of testing – A class with one responsibility will have far fewer test cases.

Lower coupling – Less functionality in a single class will have fewer dependencies.

How/Where to spot violations of SRP?

A method with multiple if-else statements. An example would be the fly method
of the Bird class. This is not a silver bullet, but it is a good indicator. There can be

other reasons for multiple if-else statements such as business logic e.g. calculating
the tax, checking access rights, etc.

 Monster methods or God classes - Methods that are too long and doing much more

than the name suggests. This is a good indicator of a violation of SRP.

def save_to_database(self) -> None:
 # Connect to database
 db = Database(url="localhost", port=3306)
 db.connect()

 connection = db.create_connection()
 connection.set_database("users")

 # Create a query
 query = "SELECT * FROM users"

 # Execute the query
 result = db.execute(query)

 # Create a user defined object from the result
 user = [User(row) for row in result]

 # Close the connection
 db.close()

The above method is doing much more than the name suggests. It is connecting to the

database, creating a query, executing the query, creating a user defined object, and

closing the connection. This method violates the SRP. It should be split into multiple

methods such as connect_to_database , create_query , execute_query ,
 create_user_object , and close_connection .

 Utility classes - Utility classes are classes that contain only static methods which
are used to perform some utility functions. Have a look at the utility package of Java

here (https://docs.oracle.com/javase/8/docs/api/java/util/package-summary.html). There is just way

too many responsibilities of this package.

Open/closed principle

We identified a bunch of problems with the Bird class. Let us see the fly method again to

spot another problem.

def fly(self) -> None:
 if self.bird_type == "eagle":
 fly_like_eagle()
 elif self.bird_type == "penguin":
 fly_like_penguin()
 elif self.bird_type == "parrot":
 fly_like_parrot()

https://docs.oracle.com/javase/8/docs/api/java/util/package-summary.html

In the above code, we are checking the type of the bird and then calling the appropriate

method. If we want to add a new type of bird, we would have to change the code in the

 fly method. This is a violation of the Open/Closed Principle.

The Open/Closed Principle states that a class should be open for extension but

closed for modification. This means that we should be able to add new functionality

to the class without changing the existing code. To add a new feature, we should ideally

create a new class or method and have very little or no changes in the existing code.

In doing so, we stop ourselves from modifying existing code and causing potential new

bugs in an otherwise happy application. We should be able to add new functionality

without touching the existing code for the class. This is because whenever we modify the

existing code, we are taking the risk of creating potential bugs. So we should avoid

touching the tested and reliable (mostly) production code if possible.

A module will be said to be open if it is still available for extension. For example, it

should be possible to add fields to the data structures it contains, or new elements to

the set of functions it performs.

A module will be said to be closed if [it] is available for use by other modules. This

assumes that the module has been given a well-defined, stable description (the

interface in the sense of information hiding).

Abstract classes and interfaces

An abstract class in Python is a class that contains one or more abstract methods. An

abstract method is a method that is declared, but contains no implementation. Abstract

classes may not be instantiated, and require subclasses to provide implementations for the

abstract methods. Subclasses of an abstract class in Python are not required to implement

abstract methods of the parent class. An abstract class can have both abstract and non-

abstract (concrete) methods.

In Python, an abstract class is created by inheriting the ABC class from the abc
module.

The ABC class is also known as the metaclass since it is used to create classes.

The ABC class is an abstract class that provides the infrastructure for defining
abstract methods.

The abstractmethod decorator is used to define abstract methods.

from abc import ABC, abstractmethod
from dataclasses import dataclass

@dataclass
class Animal(ABC):
 name: str
 age: int

 @abstractmethod
 def make_sound(self):
 pass

 def eat(self):
 print("Eating...")

Interface

An Interface in Java programming language is defined as an abstract type used to specify

the behavior of a class. An interface in Java is a blueprint of a class. A Java interface

contains static constants and abstract methods. The interface in Java is a mechanism to

achieve abstraction.

However, Python does not have interfaces.

Why does Python not have interfaces?

Python, like many modern programming languages, does not enforce explicit

interfaces because it follows a principle called “Duck typing.”

Duck typing means that the type or the class of an object is less important than

the methods it defines. If an object has a particular behavior (methods), it’s

considered to be of a certain type, regardless of its actual class or inheritance

hierarchy.

Python supports multiple inheritance, which allows a class to inherit from more

than one base class. This approach allows for a more dynamic and adaptable

system, where classes can inherit methods and behaviors from multiple sources.

Fixing OCP violation in the Bird class

Now that we have learnt about abstract classes and interfaces, let us fix the SRP and OCP

violation in the Bird class. In order to fix the SRP violations, we would consider having a

parent class Bird and child classes Eagle , Penguin , and Parrot . Since, different birds
have the same attributes and behaviours, we would want to use classes. An instance of the

 Bird class does not make sense, hence we would use an abstract class. We can’t use an

interface since we would want to have instance variables. We would also want to have a

fixed contract for the subclasses to implement the common functionalities. Hence, we

would use an abstract class.

Now, our Bird class would look like this.

Bird

+weight: int

+colour: string

+type: string

+size: string

+beakType: string

+fly()

Eagle

+fly()

Penguin

+fly()

Parrot

+fly()

The Bird class would look as follows:

from abc import ABC, abstractmethod
from dataclasses import dataclass

@dataclass
class Bird(ABC):
 weight: int
 colour: str
 bird_type: str
 size: str
 beak_type: str

 @abstractmethod
 def fly(self) -> None:
 pass

The Eagle class would look as follows:

from bird import Bird

class Eagle(Bird):
 def fly(self) -> None:
 print("Flying like an eagle...")

Reading List

SOLID vs CUPID vs GRASP (https://www.boldare.com/blog/solid-cupid-grasp-principles-object-

oriented-design/#what-is-solid-and-why-is-it-more-than-just-an-acronym?-solid-vs.-cupid---is-the-new-

always-better?)

Principles of OOD (http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod)

SRP and Python (https://sobolevn.me/2019/03/enforcing-srp)

https://www.boldare.com/blog/solid-cupid-grasp-principles-object-oriented-design/#what-is-solid-and-why-is-it-more-than-just-an-acronym?-solid-vs.-cupid---is-the-new-always-better?
https://www.boldare.com/blog/solid-cupid-grasp-principles-object-oriented-design/#what-is-solid-and-why-is-it-more-than-just-an-acronym?-solid-vs.-cupid---is-the-new-always-better?
https://www.boldare.com/blog/solid-cupid-grasp-principles-object-oriented-design/#what-is-solid-and-why-is-it-more-than-just-an-acronym?-solid-vs.-cupid---is-the-new-always-better?
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://sobolevn.me/2019/03/enforcing-srp

