
Factory design pattern

Factory design pattern

Key terms

Simple factory

Factory method

Abstract factory

Factory

Simple Factory

Factory Method

Abstract Factory

Advantages of Abstract Factory

Implementation

Recap

Key terms

Simple factory

A simple factory is a static method that returns an instance of a class. It is a

static method because it does not need to be instantiated. It is a factory

because it creates an instance of a class.

Factory method

Rather than having a single static method that returns an instance of a class,

the factory method pattern uses a class that has a method that returns an

instance of a class. This method is not static because it needs to be

instantiated.

Abstract factory

The abstract factory pattern is a factory of factories. It is a factory that creates

other factories. It is a factory that creates other factories that create instances

of classes.

Factory

The factory method pattern is a creational pattern that uses factory methods to

deal with the problem of creating objects without having to specify the exact

class of the object that will be created. This is done by creating objects by

calling a factory method—either specified in an interface and implemented by

child classes, or implemented in a base class and optionally overridden by

derived classes—rather than by calling a constructor.

In our previous session, we learnt how to use the prototype to create a clone of the

object. One of the motivations for using the prototype is to create a new object

without having to know the exact class of the object that will be created. For an

instance, there is an external library that we want to use in our application. We donʼt

know the exact class of the object that will be created. We just know that the object

will have a method called doSomething() . We can use the prototype to create a new
object without having to know the exact class of the object that will be created. The

library will provide us with a prototype object that we can use to create a new object.

But if the library does not expose the prototype object, we will create a prototype

object ourselves and use it to create a new object.

prototype: User = User("Tantia", "Tope")
user: User = prototype.clone()

In the above example, the client code is still not completely independent of the class

of the object that it is creating. The client code still has to call the new keyword to

create the prototype of the object. The client code also has to know the class of the

object that it is creating. This is not ideal as the client code should not have to know

the class of the object that it is creating. The client code should only know the

interface of the object that it is creating. This is where the factory pattern comes

into play.

If we want to just change the name of the class in our next version, the client code

will have to be changed making our code backward incompatible. To avoid this, we

can use the factory pattern. The factory pattern allows us to create objects without

specifying the exact class of the object that will be created. The client code can

request an object from a factory object without having to know the class of the

object that will be returned. The factory object can create the object and return it to

the client code.

Simple Factory

The simple factory pattern is a creational pattern that provides a static method

for creating objects. The method can be used to create objects without having

to specify the exact class of the object that will be created. This is done by

creating a factory class that contains a static method for creating objects.

Let us create a simple factory class that can be used to create different types of

users. The factory class will have a static method that can be used to create

different types of users.

class UserFactory:
 @staticmethod
 def create_user(role) -> User:
 if role == UserRole.STUDENT:
 return Student("Tantia", "Tope")
 elif role == UserRole.TEACHER:
 return Teacher("Tantia", "Tope")
 elif role == UserRole.ADMIN:
 return Admin("Tantia", "Tope")

The client code can request a user object from the factory class without having to

know the class of the object that will be returned.

user: User = UserFactory.create_user(UserRole.STUDENT)

The complete steps to implement the simple factory pattern are:

�. Factory class - Create a factory class that contains a static method for

creating objects.

�. Conditional - Use a conditional statement to create the object based on the

input.

�. Request - Request an object from the factory class without having to know the

class of the object that will be returned.

Factory Method

The simple factory method is easy to implement, but it has a few drawbacks. The

factory class is not extensible. If we want to add a new type of user, we will have to

modify the factory class. Also, the factory class is not reusable. If we want to create

a factory for creating different types of objects, we will have to create a new factory

class. To overcome these drawbacks, we can use the factory method pattern.

In the factory method the responsibility of creating the object is shifted to the child

classes. The factory method is implemented in the base class and the child classes

can override the factory method to create objects of their own type. The factory

method is also known as the virtual constructor.

from abc import ABC, abstractmethod

class UserFactory(ABC):
 @abstractmethod
 def create_user(self, first_name, last_name) -> User:
 pass

class StudentFactory(UserFactory):
 def create_user(self, first_name, last_name) -> Student:
 return Student(first_name, last_name)

class TeacherFactory(UserFactory):
 def create_user(self, first_name, last_name) -> Teacher:
 return Teacher(first_name, last_name)

The client code can request a user object from the base class without having to

know the class of the object that will be returned.

factory: UserFactory = TeacherFactory()
user: User = factory.createUser("Tantia", "Tope")

The complete steps to implement the factory method pattern are:

�. Base factory interface - Create a factory class that contains a method for

creating objects.

�. Child factory class - Create a child class that extends the base factory class

and overrides the factory method to create objects of its own type.

�. Request - Request an object from the factory class without having to know the

class of the object that will be returned.

Abstract Factory

The abstract factory pattern is a creational pattern that provides an interface

for creating families of related or dependent objects without specifying their

concrete classes.

Let us take the example of a classroom. We have already created a User abstract
class. Now we will create the concrete classes Student and Teacher . To restrict
the usage of subclasses, we can create factories for each of the concrete classes.

The StudentFactory will be used to create Student objects and the

 TeacherFactory will be used to create Teacher objects.

class StudentFactory(UserFactory):
 def create_user(self, first_name, last_name) -> Student:
 return Student(first_name, last_name)

class TeacherFactory(UserFactory):
 def create_user(self, first_name, last_name) -> Teacher:
 return Teacher(first_name, last_name)

So now in order to create a classroom, we can use the respective factories to create

the objects.

student_factory: UserFactory = StudentFactory()
student: User = student_factory.create_user("Tantia", "Tope")

teacher_factory: UserFactory = TeacherFactory()
teacher: User = teacher_factory.create_user("Tantia", "Tope")

But now we have a problem, we can use the factories to create any type of student

and teacher. Should a teacher teaching Physics be able to teach a student of Biology

class? This is where the concept of related or a family of objects comes into play.

The Student and Teacher objects are related to each other. A teacher should only

be able to teach a student of the same class. So we can create a factory that can

create a family of related objects. The ClassroomFactory will be used to create

 Student and Teacher objects of the same class.

from abc import ABC, abstractmethod

class ClassroomFactory(ABC):
 @abstractmethod
 def create_student(self, first_name, last_name) -> Student:
 pass

 @abstractmethod
 def create_teacher(self, first_name, last_name) -> Teacher:
 pass

Now we can create concrete factories for each family of related objects that we want

to create.

class BiologyClassroomFactory(ClassroomFactory):
 def create_student(self, first_name, last_name) -> Student:
 return BiologyStudent(first_name, last_name)

 def create_teacher(self, first_name, last_name) -> Teacher:
 return BiologyTeacher(first_name, last_name)

The class ClassroomFactory is an abstract class that contains the factory methods
for creating the objects. The child classes can override the factory methods to

create objects of their own type. The client code can request an object from the

factory class without having to know the class of the object that will be returned.

factory: ClassroomFactory = BiologyClassroomFactory()
student: Student = factory.create_student("Tantia", "Tope")
teacher: Teacher = factory.create_teacher("Tantia", "Tope")

The class ClassroomFactory becomes our abstract factory that essentially is a
factory of factories.

Advantages of Abstract Factory

 Isolate concrete classes - The client code is not coupled to the concrete

classes of the objects that it creates.

 Easy to exchange product families - The client code can request an object
from the factory class without having to know the class of the object that will be

returned. This makes it easy to exchange product families.

 Promotes consistency among products - The client code can request an
object from the factory class without having to know the class of the object that

will be returned. This makes it easy to maintain consistency among products.

Implementation

�. Abstract product interface - Create an interface for the products that will be
created by the factory.

class Button(ABC):
 @abstractmethod
 def render(self) -> None:
 pass

 @abstractmethod
 def on_click(self) -> None:
 pass

�. Concrete products - Create concrete classes that implement the product
interface.

class RoundedButton(Button):
 def render(self) -> None:
 print("Rendered rounded button")

 def on_click(self) -> None:
 print("Clicked rounded button")

�. Abstract factory interface - Create an interface for the abstract factory that
will be used to create the products.

class FormFactory(ABC):
 @abstractmethod
 def create_button(self) -> Button:
 pass

�. Concrete factories - Create concrete classes that implement the abstract
factory interface.

class RoundedFormFactory(FormFactory):
 def create_button(self) -> Button:
 return RoundedButton()

�. Client code - Request an object from the factory class without having to know

the class of the object that will be returned.

factory: FormFactory = RoundedFormFactory()
button: Button = factory.create_button()

Recap

The factory pattern is a creational design pattern that can be used to create

objects without having to specify the exact class of the object that will be

created.

It reduces the coupling between the client code and the class of the object that

it is creating.

Simple factory - The factory class contains a static method for creating objects.

This technique is easy to implement, but it is not extensible and reusable. It

violates the open-closed principle and the single responsibility principle.

Factory method - The responsibility of creating the object is shifted to the child

classes. The factory method is implemented in the base class and the child

classes can override the factory method to create objects of their own type. This

technique is extensible and reusable. It follows the open-closed principle and

the single responsibility principle.

