
Decorator and Flyweight

Decorator and Flyweight

Key terms

Decorator

Flyweight

Decorator

Problem

Solution

Advantages

Flyweight Pattern

Implementation

Recap

Key terms

Decorator

A structural design pattern that allows adding new behaviors to objects by

placing these objects inside special wrapper objects that contain the behaviors.

Flyweight

Flyweight is a structural design pattern that lets you fit more objects into the

available amount of RAM by sharing common parts of state between multiple

objects instead of keeping all the data in each object.

Decorator

The Decorator attaches additional responsibilities to an object dynamically. The

ornaments that are added to pine or fir trees are examples of Decorators. Lights,

garland, candy canes, glass ornaments, etc., can be added to a tree to give it a

festive look. The ornaments do not change the tree itself which is recognizable as a

Christmas tree regardless of particular ornaments used. As an example of additional

functionality, the addition of lights allows one to “light up” a Christmas tree.

Another example: assault gun is a deadly weapon on itʼs own. But you can apply

certain “decorations” to make it more accurate, silent and devastating.

Problem

Let us say we want to build a class that sends our users emails with a greeting. We

can start with a simple class:

class EmailService:
 def send_email(self, email, message) -> None:
 ...

As the application grows we may want to add some additional functionality to our

email service. For example, we may want to send phone notifications to our users or

send them slack messages. We can obviously add new methods to our EmailService

class, but this will violate the Single Responsibility Principle. So we do as we always

do and abstract the functionality into a separate class:

from abc import ABC, abstractmethod

class Communicator(ABC):
 @abstractmethod
 def send(self, target, message) -> None:
 pass

Now we have the following hierarchy:

Communicator

+send(String target, String message)

EmailService

+send(String email, String message)

PhoneService

+send(String phone, String message)

SlackService

+send(String slackId, String message)

The above hierarchy is fine, but what if we want to send emails to our users and also

send them a phone notification? We can use the separate classes, but this will

violate the Open-Closed Principle. We canʼt extend the functionality of our

EmailService class, because it is final. So we need to create a new class that will

encapsulate the functionality of the EmailService and the PhoneService classes:

Communicator

+send(String target, String message)

EmailService

+send(String email, String message)

PhoneService

+send(String phone, String message)

SlackService

+send(String slackId, String message)

EmailPhoneService

+send(String target, String message)

The above approach is extremely brittle. If we want to add a new functionality, we

will have to create a new class for each combination of existing functionalities. It also

leads to class explosion. The number of classes grows exponentially with the number

of possible combinations of functionalities.

Solution

The problem with the above approach is that inheritance is static. We canʼt add new

functionality to an existing class at runtime. Apart from that multiple inheritance is

not supported in a lot of languages and hence to create a new class that

encapsulates the functionality of multiple existing classes we have to duplicate the

code of the existing classes.

Another option is to use composition. We can create a new class that will contain

references to the existing classes and delegate the calls to the existing classes. This

where the Decorator pattern comes in. The Decorator pattern allows us to add new

functionality to an existing object without altering its structure. The Decorator

pattern is also known as Wrapper.

A wrapper is an object that can be linked with some target object. The wrapper

contains the same set of methods as the target and delegates to it all requests it

receives. However, the wrapper may alter the result by doing something either

before or after it passes the request to the target. The wrapper implements the same

interface as the wrapped object.

The Decorator pattern is implemented with the following steps:

�. Common product interface - Declare the common interface for both wrappers
and wrapped objects.

from abc import ABC, abstractmethod

class Communicator(ABC):
 @abstractmethod
 def send(self, target, message) -> None:
 pass

�. Concrete product - Create a concrete product class that implements the
common interface and represents the basic behavior of the wrapped object.

class EmailService(Communicator):
 def send(self, email, message) -> None:
 ...

�. Base decorator - Create a base decorator class that implements the common
interface and contains a field for storing a reference to a wrapped object.

from abc import ABC

class CommunicatorDecorator(ABC, Communicator):
 def __init__(self, communicator: Communicator):
 self.communicator = communicator

�. Concrete decorators - Create concrete decorator classes that extend the base

decorator class and add additional behavior to the wrapped object.

class PhoneService(CommunicatorDecorator):

 def __init__(self, communicator: Communicator):
 super().__init__(communicator)

 def send(self, phone, message) -> None:
 self.communicator.send(phone, message)
 self.send_phone_notification(phone, message)

 def send_phone_notification(self, phone, message) -> None:
 ...

�. Client - The client code works with all objects using the common interface.

This way it can stay independent of the concrete classes of objects it works

with.

def main():
 communicator = EmailService()
 phone_service = PhoneService(communicator)
 slack_service = SlackService(phone_service)
 slack_service.send("user", "Hello")

Advantages

Object behavior can be extended at runtime by wrapping an object with one or

several decorators without creating a new subclass.

Runtime configuration of an object is possible.

New behavior can be added to an object without changing its code.

SRP is respected by encapsulating the behavior in a separate class.

Flyweight Pattern

The flyweight pattern is used to reduce the memory footprint of a program by

sharing as much data as possible with similar objects.

Today, we again assume the role of game developer and are looking to create a role-

playing game like PUBG, counter strike etc. We modeled our game in various classes

such as Map, User, Gun and Bullet. We are able to create a functional end to end

game. The game works smoothly when you and your friend play it.

So you decide to host a game party to show off your new game. When a lot of

players start playing the game, you notice that the game is lagging. You check the

memory usage of the game and notice that the memory usage is very high. Each

bullet was represented by a separate object containing plenty of data. At some point,

when the carnage on a playerʼs screen reached its climax, newly created particles no

longer fit into the remaining RAM, so the program crashed.

Let us take a closer look at the Bullet class.

Bullet

+ double x

+ double y

+ double z

+ double radius

+ double direction

+ double speed

+ int status

+ int type

+ string image

The memory used by a single bullet instance would be:

 Double - 8 bytes * 6 = 48 bytes

 Integer - 4 bytes * 2 = 8 bytes

 Image - 1KB

Let us say each person has around 400 bullets and there are 200 people playing the

game. The total memory used by the bullets would be 1KB * 400 * 200 = 80MB. This

is a lot of memory for just 200 people playing the game. Imagine if the number of

bullets increase or the number of players increase. The memory usage would be

even higher. For 2000 bullets for 200 players the memory usage would be 800MB.

The major problem here is for each object, the image field consumes a lot of

memory. The image is also the same for all the bullets.

Other parts of a particleʼs state, such as coordinates, movement vector and speed,

are unique to each particle. After all, the values of these fields change over time.

This data represents the always changing context in which the particle exists, while

the color and sprite remain constant for each particle.

This constant data of an object is usually called the intrinsic state. It lives within the

object; other objects can only read it, not change it. The rest of the objectʼs state,

often altered “from the outside” by other objects, is called the extrinsic state.

The Flyweight pattern suggests that you stop storing the extrinsic state inside the

object. Instead, you should pass this state to specific methods which rely on it. Only

the intrinsic state stays within the object, letting you reuse it in different contexts. As

a result, youʼd need fewer of these objects since they only differ in the intrinsic

state, which has much fewer variations than the extrinsic.

So our Bullet class will have to be divided into two classes. One class will contain the

intrinsic state and the other class will contain the extrinsic state. The extrinsic state

will be passed to the methods that need it.

FlyingBullet

+ double x

+ double y

+ double z

+ double radius

+ double direction

+ double speed

+ int status

+ int type

+ Bullet bullet

Bullet

+ string image

Now, every bullet will have a reference to the Bullet object. The Bullet object will

contain the image field. The FlyingBullet class will contain the extrinsic state. Each

bullet does not need to have its own image field. The image field is shared between

all the bullets. This way, the memory usage is reduced.

Implementation

 Intrinsic state - The intrinsic state is stored in the flyweight object. It is

independent of the flyweightʼs context and remains the same for all flyweight

objects.

from dataclasses import dataclass

@dataclass
class Bullet:
 image: str

 Extrinsic state - The extrinsic state is stored or computed by client objects.

It depends on the flyweightʼs context and changes with it.

from dataclasses import dataclass

@dataclass
class FlyingBullet:
 x: float
 y: float
 z: float
 radius: float
 direction: float
 speed: float
 status: int
 type: int
 bullet: Bullet

 Flyweight Registry - The flyweight registry is responsible for creating and

managing flyweight objects. It ensures that flyweights are shared properly.

When a client requests a flyweight, the flyweight registry returns an existing

instance.

class BulletRegistry:
 def __init__(self):
 self.bullets = {}

 def get_bullet(self, bullet_type: BulletType) -> Optional[Bullet]:
 return self.bullets.get(bullet_type)

 def add_bullet(self, bullet_type: BulletType, bullet: Bullet) -> None:
 self.bullets[bullet_type] = bullet

 Client code - The client code usually creates a bunch of pre-populated
flyweights in the initialization stage of the application.

Recap

The flyweight pattern is used to reduce the memory footprint of a program by

sharing as much data as possible with similar objects.

First we need to identify the intrinsic and extrinsic state of the object.

The intrinsic state is stored in the flyweight object. It is independent of the

flyweightʼs context and remains the same for all flyweight objects.

The extrinsic state is stored or computed by client objects. It depends on the

flyweightʼs context and changes with it.

The extrinsic object contains a reference to the flyweight object or is composed

of the flyweight object.

A flyweight factory is responsible for creating and managing flyweight objects. It

ensures that flyweights are shared properly. When a client requests a flyweight,

the flyweight factory either returns an existing instance or creates a new one, if

it doesnʼt exist yet.

