
Behavioural design patterns

Behavioural design patterns

Behavioural Design Patterns

Observer

Strategy

Observer Pattern

Implementation

Recap

Strategy design pattern

Implementation

Recap

Behavioural Design Patterns

Behavioural design patterns are design patterns that identify common

communication patterns between objects and realize these patterns. By doing

so, these patterns increase flexibility in carrying out this communication.

Observer

The observer pattern is a software design pattern in which an object, called the

subject, maintains a list of its dependents, called observers, and notifies them

automatically of any state changes, usually by calling one of their methods.

Strategy

The strategy pattern (also known as the policy pattern) is a software design

pattern that enables an algorithm’s behavior to be selected at runtime. The

strategy pattern defines a family of algorithms, encapsulates each algorithm,

and makes the algorithms interchangeable within that family.

Observer Pattern

Imagine it is iPhone season again, where Apple releases a new version of the iPhone

and millions of individuals can’t wait to get there hands on it. The stock at the local

store has not yet been updated, but you want to be the first to know when the new

iPhone is available. You can go to the store every day to check if the stock has been

updated, but that is wasteful. Another option is that the store sends everyone an

email when the new phones come in. Again, it is wasteful since not everyone is

interested in the new iPhone. The best option is that you register or subscribe to the

store’s mailing list. When the new iPhone comes in, the store sends an email to

everyone on the mailing list. This is the motivation behind the Observer pattern.

We now want to build a Bitcoin tracking application that sends out emails or tweets

when the price of Bitcoin changes. We have a data model for Bitcoin that contains

the current price of Bitcoin. Apart from this we have a BitcoinTracker class that is
responsible for setting the price of the Bitcoin.

class BitcoinTracker:
 def __init__(self, bitcoin):
 self.bitcoin = bitcoin

 def set_price(self, price):
 self.bitcoin.set_price(price)

Now we want to send an email when the price of Bitcoin changes. We can do this by

calling the sendEmail method in the setter method of the BitcoinTracker class.

class BitcoinTracker:
 def __init__(self, bitcoin):
 self.bitcoin = bitcoin

 def set_price(self, price):
 self.bitcoin.set_price(price)
 self.send_email()

The above implementation works but it is not ideal. The BitcoinTracker class has
two responsibilities. It is responsible for setting the price of Bitcoin and it is

responsible for sending an email. The BitcoinTracker class violates the Single
Responsibility Principle. Similarly, we can also send a tweet when the price of Bitcoin

changes. We can do this by calling the sendTweet method in the setter method of

the BitcoinTracker class. This now violates the Open-Closed Principle. We will

have to change the code in multiple places if we want to add a new feature.

class BitcoinTracker:
 def __init__(self, bitcoin):
 self.bitcoin = bitcoin

 def set_price(self, price):
 self.bitcoin.set_price(price)
 self.send_email()
 self.send_tweet()

Another option is to have a secondary class fetch the price of Bitcoin and send an

email when the price changes. This is known as polling. The problem with any polling

approach is that it is wasteful. The secondary class will have to poll the

BitcoinTracker class every few seconds to check if the price has changed.

class BitcoinPoller:
 def __init__(self, bitcoin_tracker):
 self.bitcoin_tracker = bitcoin_tracker
 self.previous_bitcoin = bitcoin_tracker.get_bitcoin()

 def poll(self):
 current_bitcoin = self.bitcoin_tracker.get_bitcoin()
 if current_bitcoin.price != self.previous_bitcoin.price:
 self.send_email()
 self.previous_bitcoin = current_bitcoin

The two approaches we have discussed so far are not ideal. The first approach

violates the Single Responsibility Principle. The second approach is wasteful. The

Observer pattern suggests that you define a one-to-many dependency between

objects so that when one object changes state, all its dependents are notified and

updated automatically.

Implementation

1. Observable interface - This interface defines the methods that the subject
class must implement. The subject class is responsible for notifying the

observers when the state of the subject changes.

from abc import ABC, abstractmethod

class Observable(ABC):
 @abstractmethod
 def add_observer(self, observer) -> None:
 pass

 @abstractmethod
 def remove_observer(self, observer) -> None:
 pass

 @abstractmethod
 def notify_observers(self) -> None:
 pass

2. Observer interface - This interface defines the methods that the observer
class must implement. The observer class is responsible for updating itself when

the state of the subject changes.

public interface class Observer {
 void notify();
}

from abc import ABC, abstractmethod

class Observer(ABC):
 @abstractmethod
 def notify(self) -> None:
 pass

3. Concrete observables - These are the classes that implement the Observable
interface. The BitcoinTracker class is a concrete observable. The
 BitcoinTracker class is responsible for notifying the observers when the state

of the subject changes.

class BitcoinTracker(Observable):
 def __init__(self, bitcoin):
 self.bitcoin = bitcoin

 def set_price(self, price):
 self.bitcoin.set_price(price)
 self.notify_observers()

To simplify the code and provide better interfaces, we can borrow from the registry

pattern and register observers and even add utility methods to the Observable
interface.

from abc import ABC, abstractmethod

class Observable(ABC):
 def __init__(self):
 self.observers = []

 def register(self, observer):
 self.observers.append(observer)

 def deregister(self, observer):
 self.observers.remove(observer)

 def notify_observers(self):
 for observer in self.observers:
 observer.notify()

4. Concrete observers - These are the classes that implement the Observer
interface. The EmailSender class is a concrete observer. The EmailSender
class is responsible for updating itself when the state of the subject changes.

class EmailSender(Observer):
 def __init__(self, bitcoin):
 self.bitcoin = bitcoin

 def notify(self):
 self.send_email()

5. Client - The client is responsible for creating the subject and the observers.

The client is also responsible for registering the observers with the subject.

def main():
 bitcoin_tracker = BitcoinTracker()
 email_sender = EmailSender()
 bitcoin_tracker.register(email_sender)

Recap

There are often times when you want to notify other objects when the state of an

object changes. The Observer pattern suggests that you define a one-to-many

dependency between objects so that when one object changes state, all its

dependents are notified and updated automatically.

In-place updates and polling are not ideal. In-place updates violate the Single

Responsibility Principle whereas polling is wasteful.

To implement the Observer pattern, define an Observable interface that
defines the methods that the subject class must implement.

Define an Observer interface that defines the methods that the observer class
must implement. The subject class is responsible for notifying the observers

when the state of the subject changes. The observer class is responsible for

updating itself when the state of the subject changes.

Strategy design pattern

The strategy pattern (also known as the policy pattern) is a software design

pattern that enables an algorithm’s behavior to be selected at runtime. The

strategy pattern encapsulates alternative algorithms (or strategies) for a

specific task and supports their interchangeable use. The strategy pattern lets

the algorithm vary independently from clients that use it.

Today we are building a navigation system for a car. The navigation system should be

able to calculate the shortest route between two points and tell the driver how to get

there.

We start with a simple implementation that only supports driving on roads and hence

we design a simple RoadNavigation class that calculates the shortest route
between two points on a road.

class Navigator:
 def navigate(self, from: Point, to: Point) -> None:
 ...

Our application is a hit and we get a lot of requests to support other types of

navigation such as using a bike or walking. In order to support various types of

navigation we introduce a new ModeType enum that defines the different types of

navigation.

class Navigator:
 def navigate(self, from: Point, to: Point, mode: ModeType) -> None:
 if mode == ModeType.ROAD:
 ...
 elif mode == ModeType.BIKE:
 ...
 elif mode == ModeType.WALK:
 ...

This works but it is not very flexible. If we want to add a new type of navigation we

have to modify the navigate method. This is an example of a violation of the open-
closed principle. Similarly, the method has multiple reasons to change, and we have

to test it for all the different types of navigation.

We could create an interface and have a separate class for each type of navigation.

This would solve the problem of having to modify the navigate method, but
inheritance is static and we cannot change the behavior of the navigate method at

runtime. Also code duplication is a problem.

This is where the strategy pattern comes in. The strategy pattern allows us to

encapsulate the different types of navigation in separate classes and select the

appropriate one at runtime. The Strategy pattern suggests that you take a class that

does something specific in a lot of different ways and extract all of these algorithms

into separate classes called strategies. The original class, called context, must have

a field for storing a reference to one of the strategies. The context delegates the

work to a linked strategy object instead of executing it on its own.

Implementation

1. Strategy interface - defines an algorithm interface common to all supported

versions.

from abc import ABC, abstractmethod

class NavigationStrategy(ABC):
 @abstractmethod
 def navigate(self, from: Point, to: Point) -> None:
 pass

2. Concrete Strategy classes - implement the algorithms using the Strategy

interface.

class RoadNavigation(NavigationStrategy):
 def navigate(self, from: Point, to: Point) -> None:
 ...

3. Context class - maintains a reference to a Strategy object and defines an

interface that lets the strategy access its data.

class Navigator:
 def __init__(self, strategy: NavigationStrategy):
 self.strategy = strategy

 def navigate(self, from: Point, to: Point) -> None:
 self.strategy.navigate(from, to)

4. Client - creates and configures the context and the strategy objects.

def main():
 navigator = Navigator(RoadNavigation())
 navigator.navigate(Point(0, 0), Point(10, 10))

To create a strategy object we can also use a factory method.

Recap

The strategy pattern encapsulates alternative algorithms (or strategies) for a

specific task and supports their interchangeable use.

Implementing it in place violates the open-closed principle and makes the code

harder to maintain.

Inheritance is static, and we cannot change the behavior of the system at

runtime.

To use the strategy pattern we create a strategy interface and a set of classes

that implement it.

The context class maintains a reference to a strategy object and delegates the

work to it.

