
Threads and Multithreading
• Threads and Multithreading

◦ Concurrency
▪ Concurrency vs Parallelism

◦ Processes
◦ Threads

▪ Thread vs Process
▪ Using threads in Python

▪ Instantiating the Thread class
▪ Extending the Thread class

◦ Reading List

Concurrency
Concurrency is the ability of a program to execute multiple tasks at the same time.

Often, a program needs to perform multiple tasks at the same time. For example, a web
browser needs to download a file and display a web page at the same time. One option is to
have parallel tasks running on different cores of the CPU. This is called parallelism. Another
option is to have multiple tasks running on the same core of the CPU. A task starts executing
on the CPU. When the task is waiting for some input/output, the CPU switches to another
task. This is called concurrency.

Concurrency is crucial in programming for several reasons, and it becomes especially
relevant in scenarios where multiple tasks need to be performed simultaneously. Key reasons
for embracing concurrency include:

• Improved Performance : Concurrency allows for the parallel execution of tasks,
leading to improved overall performance. By utilizing multiple resources
concurrently, applications can accomplish more work in less time.

• Responsiveness : In user-facing applications, concurrency ensures
responsiveness by preventing long-running tasks from blocking the user interface.
Asynchronous processing or parallel execution keeps the application responsive
to user interactions.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

• Resource Utilization : Efficient concurrency allows the optimal utilization of
system resources. Whether it's CPU-bound computations or I/O-bound tasks,
concurrency ensures that resources are not idle, contributing to better resource
utilization.

• Scalability : Concurrency is essential for scalable applications, especially in the
context of web servers and distributed systems. Scalable systems can handle
increased workloads by efficiently utilizing multiple threads or processes.

Concurrency vs Parallelism
• Concurrent - At the same time, but not necessarily at the same instant. It is

possible for multiple threads to be at different stages of execution at the same
time but not being processed together. A single core CPU can only execute one
thread at a time. But it can switch between threads very quickly. This is called
context switching. This is how concurrency is achieved. A single core CPU can
have concurrency but not parallelism.

• Parallel - At the same time and at the same instant. It is possible for multiple
threads to be at different stages of execution at the same time and being
processed together. A single core CPU cannot achieve parallelism. It can only
achieve concurrency. A multi-core CPU can achieve both concurrency and
parallelism.

Processes
A process is an independent program that runs in its own memory space. Each process has
its own Python interpreter and runs independently of other processes. Processes are well-
suited for CPU-bound tasks and can take full advantage of multi-core processors.

When you run a Python program, the interpreter creates a process. This process is assigned a
process ID (PID) by the operating system. The process ID is a unique number that is used to
identify the process. The process ID is used to perform operations on the process, such as
terminating the process.

You can use the os module to get the process ID of the current process:

import os

print(os.getpid())

The current process is also called the main process. For further independent execution, the
main process can create new processes. The main process is called the parent process, and
the new processes are called child processes. You can use the multiprocessing module to
create new processes:

import multiprocessing

def print_process_id():

print(f"Process ID: {os.getpid()}")

if __name__ == "__main__":

print_process_id()

process = multiprocessing.Process(target=print_process_id)

process.start()

Some points to note about the above code:

• The multiprocessing module has a Process class that can be used to create a
new process.

• The Process class takes a target parameter that is used to specify the
function that is executed by the process.

• The Process class has a start method that is used to start the process. The
start method calls the function specified by the target parameter.

Let's write a program that calculates the sum of two arrays using multiple processes:

from multiprocessing import Process

def calculate_sum(data: List[int]):

return sum(data)

if __name__ == "__main__":

data_list = [list(range(10)), list(range(10, 20))] # Creating a 2D list of data

Creating a Process for summing each list

processes = [Process(target=calculate_sum, args=(data,)) for data in data_list]

Starting and running processes concurrently

for process in processes:

process.start()

Waiting for all processes to complete

for process in processes:

process.join()

Here we first created a 2D list containing two lists of integers. Then we created a process for
each list. We started all the processes and waited for them to complete. The join method is
used to wait for a process to complete. The join method is a blocking method. It waits until
the process is completed and then returns.

Threads
A thread is a lightweight process. It is a unit of execution within a process. A process can
have multiple threads. Each thread has its own program counter, stack, and registers.
Threads share the same address space. This means that all threads in a process can
access the same memory. This is different from processes where each process has its
own address space.

Often, a process needs to perform multiple tasks at the same time. For example, a web
browser needs to download a file and display a web page at the same time. Creating a new
process for each task is expensive. This is because creating a new process requires a lot of
resources.

Threads are used to solve this problem. Threads are used to perform multiple tasks within a
process. This is done by sharing the same address space. This means that all threads in a
process can access the same memory. This is different from processes where each process
has its own address space.

Thread is a sequential flow of tasks within a process. Threads in OS can be of the same or
different types. Threads are used to increase the performance of the applications.
Each thread has its own program counter, stack, and set of registers. But the threads of a
single process might share the same code and data/file. Threads are also termed as
lightweight processes as they share common resources.

Thread vs Process

Process Thread

Processes use more resources and
hence they are termed as heavyweight
processes.

Threads share resources and hence they are
termed as lightweight processes.

Creation and termination times of
processes are slower.

Creation and termination times of threads are
faster compared to processes.

Processes have their own code and
data/file.

Threads share code and data/file within a
process.

Communication between processes is
slower.

Communication between threads is faster.

Context Switching in processes is
slower.

Context switching in threads is faster.

Processes are independent of each
other.

Threads, on the other hand, are
interdependent. (i.e they can read, write or
change another thread’s data)

Eg: Opening two different browsers. Eg: Opening two tabs in the same browser.

Using threads in Python
In Python, the threading module provides a way to work with threads. There are two main
ways to create a thread:

1. Instantiating the Thread class
2. Extending the Thread class

Instantiating the Thread class

You can create threads using the Thread function directly from the threading module. This
approach is more suitable when the thread's logic is defined in a target function.

from threading import Thread

def print():

Code to be executed in the new thread

print("Thread function is running")

Creating a thread using the Thread function

my_thread = Thread(target=print)

Starting the thread

my_thread.start()

Waiting for the thread to complete (optional)

my_thread.join()

• We first created a thread using the Thread function. The Thread function takes
a target parameter that is used to specify the function that is executed by the
thread.

• Then we started the thread using the start method. The start method calls
the function specified by the target parameter.

• The join method is used to wait for a thread to complete. The join method is
a blocking method. It waits until the thread is completed and then returns.

Extending the Thread class

You can also create threads by extending the Thread class. This approach is more suitable
when you have complex logic or require a reusable thread class.

from threading import Thread

class MyThread(Thread):

def run(self):

Code to be executed in the new thread

print("Thread function is running")

Creating a thread using the MyThread class

my_thread = MyThread()

Starting the thread

my_thread.start()

Waiting for the thread to complete (optional)

my_thread.join()

Reading List
• Web Browser architecture

https://levelup.gitconnected.com/how-web-browsers-use-processes-and-threads-9f8f8fa23371

	Threads and Multithreading
	Concurrency
	Concurrency vs Parallelism

	Processes
	Threads
	Thread vs Process
	Using threads in Python
	Instantiating the Thread class
	Extending the Thread class

	Reading List

