Interfaces and Abstract Classes

+ Interfaces and Abstract Classes
o Abstract Classes
= Why use an abstract class?
= How to create an abstract class?
o Interfaces
> Association
= Composition
= Aggregation

Abstract Classes

Abstract classes in Python are classes that cannot be instantiated on their own and are meant
to be subclassed by other classes. Abstract classes may contain abstract methods, which are
declared but not implemented in the abstract class. Subclasses must provide concrete
implementations for these abstract methods.

Why use an abstract class?

+ It is used to achieve abstraction.

+ It can have methods with an implementation and methods without an
implementation.

+ When you don't want to provide the implementation of a method, you can make it
abstract.

« When you don't want to allow the instantiation of a class, you can make it
abstract.

How to create an abstract class?

Let us create an abstract class for a Person. In Python, you can create an abstract class by
inheriting from the ABC class in the abc module. Similarly, you can create an abstract
method by using the abstractmethod decorator.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

from abc import ABC, abstractmethod
class Person(ABC):

@abstractmethod
def get_name(self):
pass

@abstractmethod
def get_email(self):
pass

o Abstract Methods

Python does not have built-in support for abstract methods like Java, where you do not
have to provide an implementation for abstract methods. In Python, you can either add
a dummy implementation by using the pass statement or raise a
NotImplementedError exception.

Another interesting way is to use the ... ellipsis, which is a special literal that can be
used in place of an expression or a statement. It is used to indicate incomplete code.
When the interpreter finds an ellipsis, it raises a SyntaxError exception.

Now let's create a class that extends the Person abstract class:

class User(Person):
def __init__ (self, name, email):
self.name = name
self.email = email

def get_name(self):
return self.name

def get_email(self):
return self.email

In the above example, we have extended from the Person class by adding it to the class
declaration. We have also provided implementations for the abstract methods get_name and

get_email .

You can create an instance of the User class and call the get_name and get_email
methods:

user = User("Tantia Tope", "t@t.in")

print(user.get_name())

(
print(user.get_email())

Interfaces

It can be thought of as a blueprint of behavior. It is used to achieve abstraction.

An interface is a reference type in Java. It is similar to a class, but it cannot be instantiated. It
can contain only constants, method signatures, default methods, static methods, and nested
types. Method bodies exist only for default methods and static methods.

Why use an interface?

* It is used to achieve abstraction.
+ Define a common behavior for related classes.

In Python, interfaces are not explicitly defined as a language construct, as in some
other programming languages like Java or C#. Instead, interfaces are typically represented
by classes that define a set of methods without providing any implementation. A class in
Python can be considered to implement an interface if it provides implementations for all the
methods declared in that interface.

o Why does Python not have interfaces?

There are multiple reasons why Python does not have interfaces as a language
construct:

Duck Typing - Python uses duck typing, which means that the type or the

class of an object is less important than the methods it defines. If an object
has all the methods defined in an interface, then it can be considered to
implement that interface.

* Multiple Inheritance - Java uses interfaces to achieve multiple
inheritance since normal classes cannot inherit from multiple classes.
Python, on the other hand, allows multiple inheritance, so interfaces are not
needed to achieve multiple inheritance.

If you want to create a base class that is a blueprint for other classes, you can create them
similar to abstract classes. Let's say we want to create a class EmailSender . To make it
extensible to other forms of communication, we can create an abstract class

NotificationSender :

from abc import ABC, abstractmethod

class NotificationSender(ABC):
@abstractmethod
def send(self, person: Person, message: str):
pass

This class can be extended by other classes that want to implement the send method. Let's
create a class EmailSender that extends the NotificationSender class:

class EmailSender(NotificationSender):
def send(self, person: Person, message: str):
print(f"Sending email to {person.get_email()}")

This how you can use abstract classes in Python for the same purpose as interfaces in Java.

Association

Association represents a relationship between two or more classes.

Association is a relationship where all objects have their own lifecycle and there is no owner.
Let's take an example of a Car and an Engine. A car can have an engine, but an engine can

also be used in multiple cars. Both have their own lifecycle and there is no ownership
between the objects and both can exist without each other.

class Engine:
def __init_ (self, capacity: int):
self.capacity = capacity

def start(self):
print("Engine started")

def stop(self):
print("Engine stopped")

class Car:
def __init_ (self, engine: Engine):
self.engine = engine

def start(self):
self.engine.start()

def stop(self):
self.engine.stop()

In the above example, the Car class has a reference to the Engine class. The Car class
can use the Engine class to start and stop the engine. The Engine class can also be used
by other classes like Truck or Bus .

When a class contains a reference to another class, we call it an association. In the above
example, the Car class is associated with the Engine class. There are two types of

association:

Composition

Composition is a type of association where one class, known as the "composite" class,
contains an object of another class within its own structure. The composed class has a strong
relationship with the component class, meaning that the component's lifecycle is managed by
the composite. If the composite is destroyed, the component is typically also destroyed.

In the provided example, the Car class has a composition relationship with the Engine class.
The Car class encapsulates an instance of the Engine class as one of its attributes. This
composition allows the Car class to delegate certain functionalities, such as starting and
stopping the engine, to the encapsulated Engine object.

class Car:
def __init_ (self):
self.engine = Engine()

def start(self):
self.engine.start()

def stop(self):
self.engine.stop()

Aggregation

Aggregation is another form of association where one class, the "aggregate" class, contains a
reference to another class, the "component" class. However, in aggregation, the component's
lifecycle is not necessarily dependent on the aggregate. The component can exist
independently of the aggregate.

Unlike composition, aggregation represents a weaker relationship. If the aggregate is
destroyed, the component can still exist. In Python, aggregation is often implemented using
references or attributes.

class Department:
def __init__ (self, name):
self.name = name
self.employees = []

def add_employee(self, employee):
self.employees.append(employee)

class Employee:
def __init__ (self, name):
self.name = name

Aggregation example

engineering_department = Department("Engineering")
alice = Employee("Alice")

bob = Employee("Bob")

engineering_department.add_employee(alice)
engineering_department.add_employee(bob)

In this example, the Department class aggregates Employee objects. If the Department is
destroyed, the Employee objects can still exist independently.

	Interfaces and Abstract Classes
	Abstract Classes
	Why use an abstract class?
	How to create an abstract class?

	Interfaces
	Association
	Composition
	Aggregation

