
21/11/2023, 11:47 Design Tic-Tac-Toe - HackMD

https://hackmd.io/RdX0jYokQCa9g7JhPrsOpA?view 1/21

01 - Design Tic-Tac-Toe - Answers

What is Tic-Tac-Toe?

TicTacToe is a 2 player game played on a 3 x 3 board. Each

player is allotted a symbol (one X and one O). Initially, the

board is empty. Alternatively, each player takes a turn and

puts their symbol at any empty slot. The first player to get

their symbol over a complete row OR a complete column OR

a diagonal wins.

You can play the game within Google Search by just

searching for “tictactoe”!

Questions to Ask

Will the game be played amongst only 2 players or can

there be any number of players in future?

Is the board size restricted to 3x3 or can it be any NxN?

Can there be different ways to win?

Can one of the players be a bot?

Feature Suggestions:

Do we want to time a move? Skip/ Declare the other

person as winner if the move doesn’t happen within x

seconds.

Do we want to support undo operation?

Can there be some players who are just watching?

Not playing.
Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

21/11/2023, 11:47 Design Tic-Tac-Toe - HackMD

https://hackmd.io/RdX0jYokQCa9g7JhPrsOpA?view 2/21

Do we want to store analytics? Basically previous

games, who played what move etc.

Support for tournaments? Basically a set of matches,

each match between 2 players of the tournament.

Expectations

The code should be working and functionally correct

Good software design practices should be followed:

Code should be modular, readable, extensible

Separation of concern should be addressed

Project structured well across multiple files/ packages

Write unit tests

No need of GUI

Problem Requirements

Board can be of any NxN size.

There can be two players.

Each player will be allotted a symbol.

The symbol can be one of O and X.

The players can be either humans or bots.

Each human player will have a name, email and profile

image.

Each bot player will have a difficulty level.

Any random player can start the game.

Then the players will take turns alternatively.

The player with any consecutive N symbols in a row,

column or diagonal wins.

If the board is full and no player has won, the game is a

draw.

Entities and their attributes

Game

Board

Players

Board

21/11/2023, 11:47 Design Tic-Tac-Toe - HackMD

https://hackmd.io/RdX0jYokQCa9g7JhPrsOpA?view 3/21

Cells

Cell

Row

Column

Symbol

Human Player

Name

Email

Profile Image

Bot Player

Difficulty Level

Design

Use Case Diagram

Game

Start Game

Make Move

Register

Check Winner

HumanPlayer

Bot

includes

API or CLI Design

The usecase diagram gives us a good idea of the API

design. We can have the following APIs:

Register a player

 API - POST /register - {"name": "Paul
Morphy", "email": "blind@chess.in", ...}

 CLI - tictactoe register --name <name> --
email <email> --profile-image <profile-
image>

Start a game

 API - POST /game/start - {"player1": "paul",
"player2": "bot", "board-size": 3}

21/11/2023, 11:47 Design Tic-Tac-Toe - HackMD

https://hackmd.io/RdX0jYokQCa9g7JhPrsOpA?view 4/21

 CLI - tictactoe start --player1 <player1> --
player2 <player2> --board-size <board-size>

Make a move

 API - POST /game/move - {"player": "paul",
"row": 1, "column": 2}

 CLI - tictactoe move --player <player> --row
<row> --column <column>

Class Diagram

Initial design

1

1

1
* 1

1

1

*

Game

- Board board

- HumanPlayer humanPlaye

- BotPlayer botPlaye

+startGame(HumanPlayer, BotPlayer, int

+makeMove(PlayerId, int, int

+checkWinner(Board, HumanPlayer, BotPlayer) : Player

+registerPlayer(HumanPlayer

Board

-Cell[][] cells

+Board(int size) : Board

Cell

-int row

-int column

-Symbol symbol

HumanPlayer

-String name

-String email

-Byte[] profileImage

+play(Board) : BoardCel

BotPlayer

-Level difficultyLeve

+play(Board) : BoardCel

Problems:

The Game class is tightly coupled with the HumanPlayer

and BotPlayer classes. It is not extensible to support any

other type of player and number of players.

There is no common contract for the players.

 Huge memory consumption - A player can play multiple

games at the same time. Each will have a new

 HumanPlayer object. Each player object will have the

profile image. This will consume a lot of memory.

21/11/2023, 11:47 Design Tic-Tac-Toe - HackMD

https://hackmd.io/RdX0jYokQCa9g7JhPrsOpA?view 5/21

Implementing the play method for the bot player will

lead to SRP and OCP violations because it will be

deciding the move based on the difficulty level. This will

lead to a lot of if-else conditions.

Adding a contract for players using an abstract
class

1
*

Game

- Board board

- Player[] players

+startGame(Player[], int

+makeMove(PlayerId, int, int

+checkWinner(Board, HumanPlayer, BotPlayer) : Player

+registerPlayer(Player

«abstract»

Player

-Symbol symbol

+play(Board) : BoardCel

HumanPlayer

-String name

-String email

-Byte[] profileImage

+play(Board) : BoardCel

BotPlayer

-Level difficultyLeve

+play(Board) : BoardCel

Problems so far:

The Game class is tightly coupled with the HumanPlayer

and BotPlayer classes. It is not extensible to support any

other type of player and number of players.

There is no common contract for the players.

 Huge memory consumption - A player can play multiple

games at the same time. Each will have a new

 HumanPlayer object. Each player object will have the

profile image. This will consume a lot of memory.

Implementing the play method for the bot player will

lead to SRP and OCP violations because it will be

deciding the move based on the difficulty level. This will

lead to a lot of if-else conditions.

21/11/2023, 11:47 Design Tic-Tac-Toe - HackMD

https://hackmd.io/RdX0jYokQCa9g7JhPrsOpA?view 6/21

Solving the memory consumption problem using
Flyweight pattern

1
*

*
1

Game

- Board board

- Player[] players

+startGame(Player[], int

+makeMove(PlayerId, int, int

+checkWinner(Board, Player[]) : Playe

+registerPlayer(Player

«abstract»

Player

-Symbol symbol

+play(Board) : BoardCel

HumanPlayer

-User user

+play(Board) : BoardCel

User

-String name

-String email

-Byte[] profileImage

BotPlayer

-Level difficultyLeve

+play(Board) : BoardCel

Problems so far:

 Huge memory consumption - A player can play multiple

games at the same time. Each will have a new

 HumanPlayer object. Each player object will have the

profile image. This will consume a lot of memory.

Implementing the play method for the bot player will

lead to SRP and OCP violations because it will be

deciding the move based on the difficulty level. This will

lead to a lot of if-else conditions.

Fixing the SRP and OCP violations using Strategy
pattern

21/11/2023, 11:47 Design Tic-Tac-Toe - HackMD

https://hackmd.io/RdX0jYokQCa9g7JhPrsOpA?view 7/21

*
1

BotPlayer

-Level difficultyLeve

-MoveStrategy moveStrategy

+play(Board) : BoardCel

«interface»

MoveStrategy

+makeMove(Board) : BoardCel

RandomMoveStrategy

+makeMove(Board) : BoardCel

ClusteringMoveStrategy

+makeMove(Board) : BoardCel

MinimaxMoveStrategy

+makeMove(Board) : BoardCel

Problems so far:

 Huge memory consumption - A player can play multiple

games at the same time. Each will have a new

 HumanPlayer object. Each player object will have the

profile image. This will consume a lot of memory.

Implementing the play method for the bot player will

lead to SRP and OCP violations because it will be

deciding the move based on the difficulty level. This will

lead to a lot of if-else conditions.

21/11/2023, 11:47 Design Tic-Tac-Toe - HackMD

https://hackmd.io/RdX0jYokQCa9g7JhPrsOpA?view 8/21

Complete Class Diagram

1 *

1

1

1

*

*

1
*

1

Game

- Board board

- Player[] players

+startGame(Player[], int

+makeMove(PlayerId, int, int

+checkWinner(Board, Player[]) : Playe

+registerPlayer(Player

Board

-Cell[][] cells

+Board(int size) : Board

Cell

-int row

-int column

-Symbol symbol

«abstract»

Player

-Symbol symbol

+play(Board) : BoardCel

HumanPlayer

-User user

+play(Board) : BoardCel

User

-String name

-String email

-Byte[] profileImage

BotPlayer

-Level difficultyLeve

-MoveStrategy moveStrategy

+play(Board) : BoardCel

«interface»

MoveStrategy

+makeMove(Board) : BoardCel

RandomMoveStrategy

+makeMove(Board) : BoardCel

ClusteringMoveStrategy

+makeMove(Board) : BoardCel

MinimaxMoveStrategy

+makeMove(Board) : BoardCel

Future requirement - Different winning conditions for
different number of players

We want to support different winning conditions for

different number of players.

Games can same winning conditions for different number

of players and different winning conditions for same

number of players.

Solution - Use a strategy pattern to decide the winning

condition for a game.

21/11/2023, 11:47 Design Tic-Tac-Toe - HackMD

https://hackmd.io/RdX0jYokQCa9g7JhPrsOpA?view 9/21

*
1

Game

- Board board

- Player[] players

- WinningStrategy winningStrateg

+startGame(Player[], int

+makeMove(PlayerId, int, int

+checkWinner(Board, Player[]) : Playe

+registerPlayer(Player

«interface»

WinningStrategy

+checkWinner(Board, Player[]) : Playe

NInARowWinningStrategy

+checkWinner(Board, Player[]) : Playe

NInAColumnWinningStrategy

+checkWinner(Board, Player[]) : Playe

NInADiagonalWinningStrategy

+checkWinner(Board, Player[]) : Playe

Side assignment

A common requirement in games is to undo the last move.

How would you design your system to support this

requirement?

