
Builder design pattern

Builder design pattern

Key terms

Builder

Builder

Problems

Constructor with a hash map

Named parameters

Inner class

Summary

Reading list

Key terms

Builder

Builder is a creational design pattern that lets you construct complex objects step by

step. The pattern allows you to produce different types and representations of an

object using the same construction code.

Builder

Problems

 Complex object creation - There are multiple ways to create an object, but
constructors are the primary technique used for creating instances of a class.

However, constructors become unmanageable when there is a need to create an

object with many parameters. This is known as the telescoping constructor anti-

pattern. The telescoping constructor anti-pattern is a code smell that indicates that

the class has too many constructors. This is a code smell because it is difficult to

maintain and extend the class.

 Validation and failing object creation - There are cases when you want to
validate the parameters before creating an object. For example, you might want to

validate the parameters before creating a database connection. If the parameters are

invalid, you might want to throw an exception. However, if we use the default

constructor, we cannot fail object creation.

 Immutability - Mutable objects are objects whose state can be changed after they

are created. Immutable objects are objects whose state cannot be changed after they

are created. Immutable objects are easier to maintain and extend whereas mutable

objects can lead to bugs. However, if we use the default constructor, we cannot create

immutable objects.

Constructor with a hash map

The above problems can be solved using a constructor with a hash map. The constructor

will take a hash map as a parameter. The hash map will contain the parameters and their

values. The constructor will validate the parameters and create the object.

class Database:
 def __init__(self, config):
 self.host = config.get("host")
 self.port = config.get("port")
 self.username = config.get("username")
 self.password = config.get("password")

Some problems with the above code are:

 Type safety - Python is a dynamically typed language. This means that the type of a

variable is inferred at runtime. This allows us to pass any type of value to the

constructor. However, it could lead to bugs. For example, if we pass a string instead of

an integer, the code will not fail until we try to use the port variable.

 Defined parameters - With the above approach, identifying the parameters is

difficult. We need to read the code to identify the parameters. This is not a good

approach because it is difficult to maintain and extend the code.

Named parameters

In Python, you can use named parameters to solve the above problems. Named

parameters allow you to pass parameters to a function using the parameter name. This

enables us to pass any permutation of parameters to the constructor and out of order.

class Database:
 def __init__(self, host, port, username, password):
 self.host = host
 self.port = port
 self.username = username
 self.password = password

database = Database(
 host="localhost",
 port=3306,
)

While this approach solves the problems associated with passing a lot of unnecessary

parameters and ensuring they are passed in order, however it requires you to put business

logic in the constructor. This is not a good approach because it is difficult to maintain and

extend the code. For example, if you would like to validate if the host is reachable or not

before creating the object, you would have to add the validation logic to the constructor.

Putting business logic in the constructor is an anti-pattern since it makes the code difficult

to maintain and extend.

class Database:
 def __init__(self, host, port, username, password):
 if not self.is_host_reachable(host):
 raise Exception("Host is not reachable")
 self.host = host
 self.port = port
 self.username = username
 self.password = password

 def is_host_reachable(self, host):
 # Check if host is reachable
 return True

Inner class

The builder pattern addresses this issue by stating

Separate the construction of a complex object from its representation so that the

same construction process can create different representations.

This essentially means decoupling the construction of a complex object from its

representation. The builder pattern is a creational design pattern that lets you construct

complex objects, step by step. The pattern allows you to produce different types and

representations of an object using the same construction code.

Step 1 - Add an inner builder class

@dataclass
class Database:
 host: str
 port: int
 username: str
 password: str

 class Builder:
 def __init__(self):
 self.host = None
 self.port = None
 self.username = None
 self.password = None

In the above code, we have created a builder class inside the Database class. The builder

class has the same parameters as the Database class. This allows us to modify the inner

class till we are ready to create the object.

You can add a utility method to the outer class so that the developer can create the builder

class instance using the outer class.

@dataclass
class Database:
 host: str
 port: int
 username: str
 password: str

 @staticmethod
 def builder():
 return Builder()

 class Builder:
 def __init__(self):
 self.host = None
 self.port = None
 self.username = None
 self.password = None

Now when you call the builder method, it will return the builder class instance. You can use

this instance to set the parameters and build the object.

Step 2 - Add the setters

As mentioned, the idea with the builder pattern is to separate the construction of a

complex object from its representation. We have already created the builder class. We will

use this class to set the parameters. Once the parameters are set, you can get the object

of the outer class. Let’s add the setters to the builder class.

@dataclass
class Database:
 host: str
 port: int
 username: str
 password: str

 @staticmethod
 def builder():
 return Builder()

 class Builder:
 def __init__(self):
 self.host = None
 self.port = None
 self.username = None
 self.password = None

 def host(self, host):
 self.host = host

 def port(self, port):
 self.port = port

 def username(self, username):
 self.username = username

 def password(self, password):
 self.password = password

The above code can be used to set parameters as follows:

builder = Database.builder()
builder.host("localhost")
builder.port(3306)
builder.username("root")
builder.password("password")

To improve the readability and usability of the code, you can return the builder class

instance from the setter methods.

This will allow you to chain the setter methods.

@dataclass
class Database:
 host: str
 port: int
 username: str
 password: str

 @staticmethod
 def builder():
 return Builder()

 class Builder:
 def __init__(self):
 self.host = None
 self.port = None
 self.username = None
 self.password = None

 def host(self, host) -> Builder:
 self.host = host
 return self

 def port(self, port) -> Builder:
 self.port = port
 return self

 def username(self, username) -> Builder:
 self.username = username
 return self

 def password(self, password) -> Builder:
 self.password = password
 return self

Now you can chain the setter methods as follows:

builder = Database.builder()
 .host("localhost")
 .port(3306)
 .username("root")
 .password("password")

This makes our code more readable and usable.

Step 3 - Add the build method

Once we have set the parameters, we need to create the object. We will add a build

method to the builder class. This method will create the object of the outer class.

@dataclass
class Database:
 host: str
 port: int
 username: str
 password: str

 @staticmethod
 def builder():
 return Builder()

 class Builder:

 ...

 def build(self) -> Database:
 return Database(
 host=self.host,
 port=self.port,
 username=self.username,
 password=self.password
)

The build method can be thought as of a lifecycle method or a hook that should be called

at the end of the builder chain. The build method will return the object of the outer class

with the parameters set. You can now also add validation logic to the build method.

@dataclass
class Database:
 host: str
 port: int
 username: str
 password: str

 @staticmethod
 def builder():
 return Builder()

 class Builder:
 def __init__(self):
 self.host = None
 self.port = None
 self.username = None
 self.password = None

 ...

 def build(self) -> Database:

 self.validate()

 return Database(
 host=self.host,
 port=self.port,
 username=self.username,
 password=self.password
)

 def validate(self) -> None:
 if not self.is_host_reachable(self.host):
 raise Exception("Host is not reachable")

Now you can create the object as follows:

database = Database.builder()
 .host("localhost")
 .port(3306)
 .username("root")
 .password("password")
 .build()

With the above code, we have solved the problems associated with creating complex

objects. We can now create objects with any permutation of parameters. We can also

validate the parameters and fail object creation and all of this without putting business

logic in the constructor.

Final code

@dataclass
class Database:
 host: str
 port: int
 username: str
 password: str

 @staticmethod
 def builder():
 return Builder()

 class Builder:
 def __init__(self):
 self._host = None
 self._port = None
 self._username = None
 self._password = None

 def host(self, host: str) -> Builder:
 self._host = host
 return self

 def port(self, port: int) -> Builder:
 self._port = port
 return self

 def username(self, username: str) -> Builder:
 self._username = username
 return self

 def password(self, password: str) -> Builder:
 self._password = password
 return self

 def build(self) -> Database:

 self.validate()

 return Database(
 host=self._host,
 port=self._port,
 username=self._username,
 password=self._password
)

 def validate(self) -> None:

 if not self.is_host_reachable(self._host):
 raise Exception("Host is not reachable")

Code (https://github.com/scaleracademy/lld-python/blob/main/design-

patterns/src/creational/builder/database.py)

Summary

The builder pattern is a creational design pattern that lets you construct complex

objects step by step. The pattern allows you to produce different types and

representations of an object using the same construction code.

Use cases of builder pattern

Complex object creation - Telescoping constructor anti-pattern

Validation and failing object creation

Immutability

Add an inner class to separate the business logic from the construction.

Add a static method to the outer class to return the builder class instance.

Implement chained setter methods in the builder class. These methods will set the

parameter value and return the builder class instance.

Implement the build() method in the builder class. This method will return the outer

class object with the parameters set.

Reading list

Telescoping constructor anti-pattern (https://www.vojtechruzicka.com/avoid-telescoping-

constructor-pattern/)

Why objects should be immutable? (https://octoperf.com/blog/2016/04/07/why-objects-must-be-

immutable)

Builder Pattern (https://python-patterns.guide/gang-of-four/builder/)

https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/builder/database.py
https://github.com/scaleracademy/lld-python/blob/main/design-patterns/src/creational/builder/database.py
https://www.vojtechruzicka.com/avoid-telescoping-constructor-pattern/
https://www.vojtechruzicka.com/avoid-telescoping-constructor-pattern/
https://octoperf.com/blog/2016/04/07/why-objects-must-be-immutable
https://octoperf.com/blog/2016/04/07/why-objects-must-be-immutable
https://python-patterns.guide/gang-of-four/builder/

