
Data Structures in Python
• Data Structures in Python

◦ 1. Lists
▪ Internal working of lists

◦ 2. Set
▪ Internal working of sets

◦ 3. Dictionary
◦ 4. Tuple
◦ Comprension

▪ List Comprehension:
◦ Dictionary Comprehension:
◦ Set Comprehension:
◦ Advantages of Comprehensions:

1. Lists
Lists are one of the most commonly used data structures in Python. A list is a mutable,
ordered sequence of items. You can create a list using the list keyword or the square
brackets [] .

Create a list using the list keyword

list1 = list()

print(list1) # []

Create a list using square brackets

list2 = []

print(list2) # []

Create a list with initial values

list3 = [1, 2, 3]

print(list3) # [1, 2, 3]

Since Python is a dynamically typed language, you can create lists with different types of
values.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Create a list with different types of values

list4 = [1, "Python", True]

print(list4) # [1, 'Python', True]

You can also use type hints to specify the type of values in a list.

from typing import List, Union

Create a list with type hints

list5: List[int] = [1, 2, 3]

Create a list of strings

list6: List[str] = ["Python", "Java", "C++"]

Create a list of mixed types

list7: List[Union[int, str]] = [1, "Python", 3, "Java"]

You can access items in a list using the index operator [] . The index of the first item is 0 ,
the second item is 1 , and so on. You can also use negative indices to access items from the
end of the list. The index of the last item is -1 , the second last item is -2 , and so on.

Access items in a list

list8 = ["Python", "Java", "C++"]

print(list8[0]) # Python

Access items from the end of the list

print(list8[-1]) # C++

You can either add items to the end of a list using the append method or insert items at a
specific index using the insert method or the index operator [] .

Add items to the end of a list

list9 = ["Python", "Java", "C++"]

list9.append("JavaScript")

Insert items at a specific index

list9.insert(0, "TypeScript")

Insert items at a specific index using the index operator

list9[0] = "Go"

print(list9) # ['Go', 'Python', 'Java', 'C++', 'JavaScript']

You can even slice a list using the slice operator [:] . The slice operator returns a new list
containing the items in the specified range.

Slice a list

list10 = ["Python", "Java", "C++", "JavaScript"]

print(list10[1:3]) # ['Java', 'C++']

You can find more information about lists here.

Internal working of lists
A list in Python is a dynamic array that can resize itself during runtime to accommodate a
varying number of elements. The key features of dynamic arrays in Python include dynamic
resizing, indexing, and support for various operations.

Here's an overview of how dynamic arrays work in Python:

1. Dynamic Resizing:
• When elements are added to a list, Python dynamically allocates

memory to store those elements.
• The list has an initial capacity, but as elements are appended, it may

need to resize itself to accommodate more elements.
• Python often uses a strategy of doubling the capacity when resizing

to amortize the cost of resizing over a sequence of appends, ensuring
efficient performance.

https://docs.python.org/3/tutorial/datastructures.html

2. Indexing:
• Lists in Python support constant-time indexing, allowing you to

access elements by their position in the list.
3. Appending Elements:

• Appending elements to a list is generally an amortized constant-time
operation. However, occasional resizing may lead to a linear-time
operation in some cases.

4. Deleting Elements:
• Deleting elements from the end of the list using pop() is a constant-

time operation.

my_list = [1, 2, 3, 4]

my_list.pop()

• Deleting elements from arbitrary positions may require shifting
subsequent elements, resulting in a linear-time operation in the worst
case.

my_list = [1, 2, 3, 4]

del my_list[1]

5. Slicing:
• Slicing a list to create a new list is a constant-time operation, as it

creates a new reference to the existing elements.
6. Concatenation:

• Concatenating two lists using the + operator creates a new list and
takes time proportional to the sum of the lengths of the lists.

list1 = [1, 2, 3]

list2 = [4, 5, 6]

concatenated_list = list1 + list2

2. Set
A set is a mutable, unordered collection of unique items. You can create a set using the set

keyword or the curly braces {} .

Create a set using the set keyword

set1 = set()

Create a set using curly braces

set2 = {}

Create a set with initial values

set3 = {1, 2, 3}

You can add new items to a set using the add method.

Add new items to a set

set4 = {1, 2, 3}

Add a new item

set4.add(4)

print(set4) # {1, 2, 3, 4}

You can also use the update method to add multiple items to a set.

Add multiple items to a set

set5 = {1, 2, 3}

Add multiple items

set5.update([4, 5, 6])

print(set5) # {1, 2, 3, 4, 5, 6}

Sets do not allow duplicate items. If you try to add a duplicate item to a set, it'll be ignored.

Sets do not allow duplicate items

set6 = {1, 2, 3}

Add a duplicate item

set6.add(1)

print(set6) # {1, 2, 3}

Sets do not also support indexing. If you try to access an item using an index, you'll get a
TypeError .

Sets do not support indexing

set7 = {1, 2, 3}

TypeError: 'set' object is not subscriptable

print(set7[0])

Sets allow membership testing using the in and not in operators.

Membership testing

set8 = {1, 2, 3}

print(1 in set8) # True

print(4 not in set8) # True

They also support set operations like union, intersection, difference, and symmetric
difference.

Set operations

set9 = {1, 2, 3}

set10 = {3, 4, 5}

Union

print(set9 | set10) # {1, 2, 3, 4, 5}

Intersection

print(set9 & set10) # {3}

Difference

print(set9 - set10) # {1, 2}

Symmetric difference

print(set9 ^ set10) # {1, 2, 4, 5}

You can read more about sets here.

Internal working of sets
1. Hash Table:

• A set in Python is implemented as a hash table, which is a data
structure that allows for efficient insertion, deletion, and retrieval of
elements.

• The primary advantage of using a hash table is its ability to provide
constant-time average complexity for common operations, such as
adding, removing, and checking for membership.

2. Hashing:
• Hashing is a process that converts an element (such as a string or a

number) into a fixed-size numerical value, known as a hash code.
• Python's hash() function is used to compute the hash code for

elements.

my_set = {1, 2, 3}

hash_value = hash(2)

3. Bucket Array:

https://docs.python.org/3/tutorial/datastructures.html#sets

• Internally, a set maintains an array of "buckets" or "slots," where each
bucket is capable of holding multiple elements.

• The size of the array and the number of buckets are determined
dynamically based on the number of elements in the set.

4. Insertion:
• When an element is added to the set, its hash code is computed.
• The hash code is then used to determine the bucket in which the

element should be placed.
• If the bucket is empty, the element is added directly. If the bucket is

not empty (collision), a collision resolution mechanism is employed.
5. Collision Resolution:

• In the case of a collision (two elements hashing to the same bucket),
Python uses a technique called open addressing, specifically
quadratic probing.

• Quadratic probing involves searching for the next available slot by
using a quadratic function of the form (h + i^2) % N , where h is
the original hash code, i is the attempt number, and N is the size of
the array.

6. Deletion:
• When an element is removed from the set, its hash code is computed,

and the set searches for the corresponding bucket.
• If the element is found, it is removed. If there are other elements in the

same bucket, their positions may need to be adjusted.
7. Retrieval:

• When checking for membership in a set, the hash code of the queried
element is computed, and the set looks in the corresponding bucket.

• If the element is found, it is present in the set; otherwise, it is not.

3. Dictionary
A dictionary is a mutable, unordered collection of key-value pairs. You can create a dictionary
using the dict keyword or the curly braces {} .

Create a dictionary using the dict keyword

dict1 = dict()

Create a dictionary using curly braces

dict2 = {}

Create a dictionary with initial values

dict3 = {"first_name": "Tantia", "last_name": "Tope"}

Similar to lists, the data types of keys and values in a dictionary can be different.

Create a dictionary with different types of keys and values

dict4 = {"name": "Tantia Tope", "age": 50, "is_employed": True}

You can also use type hints to specify the types of keys and values in a dictionary.

from typing import Dict, Union

Create a dictionary with type hints

dict5: Dict[str, Union[str, int]] = {"name": "Tantia Tope", "age": 50}

You can access values in a dictionary using the key. If the key doesn't exist, you'll get a
KeyError .

Access values in a dictionary

dict6 = {"name": "Tantia Tope", "age": 50}

print(dict6["name"]) # Tantia Tope

KeyError: 'address'

print(dict6["address"])

You can also use the get method to access values in a dictionary. If the key doesn't exist,
you'll get None .

Access values in a dictionary using the get method

dict7 = {"name": "Tantia Tope", "age": 50}

print(dict7.get("name")) # Tantia Tope

print(dict7.get("address")) # None

You can add new key-value pairs to a dictionary using the [] operator or the update

method.

Add new key-value pairs to a dictionary

dict8 = {"name": "Tantia Tope", "age": 50}

Add a new key-value pair using the [] operator

dict8["address"] = "Meerut"

Add a new key-value pair using the update method

dict8.update({"is_employed": True})

print(dict8) # {'name': 'Tantia Tope', 'age': 50, 'address': 'Meerut', 'is_employed': True}

You can read more about dictionaries here.

defaultdict

/Users/tanmayk/Work/Scaler%20Academy/CS/advanced-concepts/notes/python/hhttps:/docs.python.org/3/tutorial/datastructures.html#dictionaries

Dictionaries are also implemented as hash tables in Python.

4. Tuple
A tuple is an immutable, ordered sequence of items. A tuple is different from a list in that it
cannot be modified after creation. You can create a tuple using the tuple keyword or the
parentheses () .

Create a tuple using the tuple keyword

tuple1 = tuple()

Create a tuple using parentheses

tuple2 = ()

Create a tuple with initial values

tuple3 = (1, 2, 3)

The `defaultdict` class is a subclass of the `dict` class that provides a default value for a key that doesn't exist in the dictionary. You can create a `defaultdict` using the `defaultdict` keyword from the `collections` module.

```python
from collections import defaultdict

# Create a defaultdict
dict9 = defaultdict(int)

# Add a new key-value pair
dict9["age"] = 50

# Access a key that doesn't exist
print(dict9["address"]) # 0
```

In this example, the `defaultdict` returns the default value `0` for the key `address` that doesn't exist in the dictionary.
The return value is `0` because we passed `int` as the default value when creating the `defaultdict`.

You can read more about it [here](https://docs.python.org/3/library/collections.html#collections.defaultdict).

You can also use type hints to specify the type of values in a tuple.

from typing import Tuple, Union

Create a tuple with type hints

tuple4: Tuple[int, str, bool] = (1, "Python", True)

You can access items in a tuple using the index operator [] . The index of the first item is 0 ,
the second item is 1 , and so on. You can also use negative indices to access items from the
end of the tuple. The index of the last item is -1 , the second last item is -2 , and so on.

Access items in a tuple

tuple5 = (1, 2, 3)

print(tuple5[0]) # 1

print(tuple5[-1]) # 3

You can destruct a tuple using the assignment operator = . This allows you to assign each
item in a tuple to a separate variable.

Destruct a tuple

tuple6 = (1, 2, 3)

Assign each item in the tuple to a separate variable

a, b, c = tuple6

print(a, b, c) # 1 2 3

Tuples are extremely useful when you want to return multiple values from a function.

Return multiple values from a function

def get_name() -> Tuple[str, str]:

return "Tantia", "Tope"

first_name, last_name = get_name()

print(first_name, last_name) # Tantia Tope

You can read more about tuples here.

Comprension
Comprehension is a syntactic construct in Python that enables the concise creation of
sequences (lists, dictionaries, and sets) using a single line of code. It combines the for loop
and an optional if condition to generate elements dynamically based on specific criteria.

List Comprehension:
List comprehensions allow for the creation of lists in a concise and readable manner. The
general syntax is as follows:

[expression for item in iterable if condition]

• expression : The expression to be evaluated and included in the list.
• item : The variable representing each element in the iterable.
• iterable : The source of elements for the list.
• condition (optional): An optional condition to filter elements.

Example:

The collections module

The collections module provides a number of useful, advanced data structures that
are not built-in to Python. The most commonly used data structures in this module
apart from defaultdict are:

• Counter : A dictionary that counts the number of occurrences of each
item.

• OrderedDict : A dictionary that remembers the order of insertion of items.
• deque : A double-ended queue that supports adding and removing items

from both ends.

You can read more about the collections module here.



https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/library/collections.html

squares = [x**2 for x in range(1, 6)]

Output: [1, 4, 9, 16, 25]

Similarly, you can use a list comprehension to filter elements based on a condition.

even_squares = [x**2 for x in range(1, 6) if x % 2 == 0]

Output: [4, 16]

You can also use nested loops in list comprehensions.

pairs = [(x, y) for x in range(1, 3) for y in range(1, 3)]

Output: [(1, 1), (1, 2), (2, 1), (2, 2)]

Dictionary Comprehension:
Dictionary comprehensions provide a concise way to create dictionaries. The syntax is similar
to list comprehensions but uses key-value pairs enclosed in curly braces {} .

{key_expression: value_expression for item in iterable if condition}

• key_expression : The expression for the dictionary keys.
• value_expression : The expression for the corresponding values.
• item , iterable , and condition have the same meanings as in list

comprehensions.

Example:

squares_dict = {x: x**2 for x in range(1, 6)}

Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Set Comprehension:
Set comprehensions generate sets using a syntax similar to list comprehensions, but with

curly braces {} .

{expression for item in iterable if condition}

• expression : The expression to be evaluated and included in the set.
• item , iterable , and condition have the same meanings as in list

comprehensions.

Example:

squares_set = {x**2 for x in range(1, 6)}

Output: {1, 4, 9, 16, 25}

Advantages of Comprehensions:
1. Conciseness: Comprehensions offer a concise and readable syntax, reducing the

need for explicit loops and temporary variables.
2. Readability: Comprehensions convey the intent of the code more clearly, making

it easier to understand.
3. Performance: Comprehensions are often more efficient than equivalent loops,

especially for simple operations.

	Data Structures in Python
	1. Lists
	Internal working of lists

	2. Set
	Internal working of sets

	3. Dictionary
	4. Tuple
	Comprension
	List Comprehension:

	Dictionary Comprehension:
	Set Comprehension:
	Advantages of Comprehensions:

