
Design Tic-Tac-Toe

What is Tic-Tac-Toe?

TicTacToe is a 2 player game played on a 3 x 3 board. Each player is allotted a

symbol (one X and one O). Initially, the board is empty. Alternatively, each player

takes a turn and puts their symbol at any empty slot. The first player to get their

symbol over a complete row OR a complete column OR a diagonal wins.

You can play the game within Google Search by just searching for “tictactoe”!

Questions to Ask

Will the game be played amongst only 2 players or can there be any number of

players in future?

Is the board size restricted to 3x3 or can it be any NxN?

Can there be different ways to win?

Can one of the players be a bot?

Feature Suggestions:

Do we want to time a move? Skip/ Declare the other person as winner if the

move doesn’t happen within x seconds.

Do we want to support undo operation?

Can there be some players who are just watching? Not playing.

Do we want to store analytics? Basically previous games, who played what

move etc.

Support for tournaments? Basically a set of matches, each match between

2 players of the tournament.

Expectations

The code should be working and functionally correct

Good software design practices should be followed:

Code should be modular, readable, extensible

Separation of concern should be addressed

Project structured well across multiple files/ packages

Write unit tests

No need of GUI

Problem Requirements

Board can be of any NxN size.

There can be two players.

Each player will be allotted a symbol.

The symbol can be one of O and X.

The players can be either humans or bots.

Each human player will have a name, email and profile image.

Each bot player will have a difficulty level.

Any random player can start the game.

Then the players will take turns alternatively.

The player with any consecutive N symbols in a row, column or diagonal wins.

If the board is full and no player has won, the game is a draw.

Entities and their attributes

Game

Board

Players

Board

Cells

Cell

Row

Column

Symbol

Human Player

Name

Email

Profile Image

Bot Player

Difficulty Level

Design

Use Case Diagram

Game

Start Game

Make Move

Register

Check Winner

HumanPlayer

Bot

includes

Initial Design

1

1

1

*

1

1

1
1

Game

-Board board

-HumanPlayer humanPlayer

-BotPlayer botPlayer

+register(HumanPlayer) : HumanPlayer

+startGame(HumanPlayer, BotPlayer, int row, int column) : Board

+makeMove(PlayerId, int, int) : Board

+checkWinner(Board, HumanPlayer, BotPlayer) : int

Board

-Cell[][] cells

+Board(int, int) : Board

Cell

-int x

-int y

-Symbol symbol

HumanPlayer

-int id

-String name

-String email

-Byte[] photo

-Symbol symbol

+play(Board) : Cell

BotPlayer

-int id

-Level level

-Symbol symbol

+play(Board) : Cell

There is no common contract for players. Parent class to represent all different

types of players.

There is tight coupling between Game and different types of players. It is not

extensible to support multiple players

OCP and SRP violation in play method.

Huge memory consumption - multiple instances of the player will be created for

multiple games. Each instance has a new photo.

Common contract - Player abstract class

Common behaviour - play

Common attributes - Symbol

1
*

Game

-Board board

-Player[] players

«abstract»

Player

-Symbol symbol

+play(Board) : Cell

HumanPlayer

-String name

-String email

-Byte[] photo

+play(Board) : Cell

BotPlayer

-Level level

+play(Board) : Cell

There is no common contract for players. Parent class to represent all different

types of players.

There is tight coupling between Game and different types of players. It is not

extensible to support multiple players

OCP and SRP violation in play method.

Huge memory consumption - multiple instances of the player will be created for

multiple games. Each instance has a new photo.

Tight coupling

-HumanPlayer

-BotPlayer

-Player[] players

 mermaid

OCP and SRP violation in play method - Strategy

Huge memory consumption - Flyweight

Paul Morphy

Instance 1 -

name - Paul Morphy

email - paul@blind.in (mailto:paul@blind.in)

photo - 5MB

symbol - O

Instance 2 -

name - Paul Morphy

email - paul@blind.in (mailto:paul@blind.in)

photo - 5MB

symbol - X

Store fields that do not change in a class - Intrinsic state

Store field that change in a class - Extrinsic state

mailto:paul@blind.in
mailto:paul@blind.in

1
*

*
1

Game

-Board board

-Player[] players

«abstract»

Player

-Symbol symbol

+play(Board) : Cell

User

-String name

-String email

-Byte[] photo

HumanPlayer

-User user

+play(Board) : Cell

Problems so far

OCP and SRP violation in play method.

Implement different levels in a bot

class BotPlayer {

 private Level level;

 private Cell play(Board board) {
 switch (level) {
 case EASY:
 // Really easy move
 case MEDIUM:
 // Medium level moves
 }
 }
}

*
1

BotPlayer

-int id

-Level level

-Symbol symbol

-PlayingStrategy strategy

+play(Board) : Cell

«interface»

PlayingStrategy

+play(Board) : Cell

RandomPlayingStrategy

+play(Board) : Cell

MinMaxPlayingStrategy

+play(Board) : Cell

AlphaBetaPlayingStrategy

+play(Board) : Cell

Inject different behaviours

Such that they can be reused

Strategy Design pattern

There is no common contract for players. Parent class to represent all different

types of players. - Abstract classes

There is tight coupling between Game and different types of players. It is not

extensible to support multiple players - List<Player>

OCP and SRP violation in play method.

Strategy pattern

Huge memory consumption - multiple instances of the player will be created for

multiple games. Each instance has a new photo. - Flyweight

