
Design Splitwise

Context

Splitwise makes it easy to split bills with friends and family. We organize all

your shared expenses and IOUs in one place, so that everyone can see who

they owe. Whether you are sharing a ski vacation, splitting rent with

roommates, or paying someone back for lunch, Splitwise makes life easier. We

store your data in the cloud so that you can access it anywhere: on iPhone,

Android, or on your computer.

Requirements

Users can register and update their profiles.

A user's profile should contain at least their name, phone number and

password

Users can participate in expenses with other users

Users can participate in groups.

To add an expense, a user must specify either the group, or the other users

involved in the expense, along with who paid

what and who owes what. They must also specify a description for the

expense.

A user can see their total owed amount

A user can see a history of the expenses they're involved in



A user can see a history of the expenses made in a group that they're

participating in

Users shouldn't be able to query about groups they are not a member of

Only the user who has created a group can add/remove members to the group

Users can request a settle-up. The application should show a list of

transactions, which when executed will ensure that

the user no longer owes or recieves money from any other user. Note that this

need not settle-up any other users.

Users can request a settle-up for any group they're participating in. The

application should show a list of transactions,

which if executed, will ensure that everyone participating in the group is settled

up (owes a net of 0 Rs). Note that will

only deal with the expenses made inside that group. Expenses outside the

group need not be settled.

Good to Have Requirements

When settling a group, we should try to minimize the number of transactions

that the group members should make to

settle up.

Note: All tests will be performed in one go. The application doesn't need to persist

data between runs.

Input Format

 Register vinsmokesanji 003 namisswwaann 

u1 is registering with the username "vinsmokesanji", phone "003" and

password as "namisswwaann"

 u1 UpdateProfile robinchwan 

u1 is updating their profile password to "robinchwan"

 u1 AddGroup Roommates 

u1 is creating a group titled "Roommates"

 u1 AddMember g1 u2 

u1 is adding u2 as a member of the group "Roommates" (which has the id g1)



 u1 MyTotal 

u1 is asking to see the total amount they owe/recieve after everything is

settled.

 u1 History 

u1 is asking to see their history of transactions (whether added by themselves

or someone

else)

 u1 Groups 

u1 is asking to see the groups that they're a member of

 u1 SettleUp 

u1 is asking to see the list of transactions they should perform to settle up

 u1 SettleUp g1 

u1 is asking to see the list of transactions that need to be performed by

members of g1 to

completely settle up the group.

 u1 Expense g1 iPay 1000 Equal Desc Wifi Bill 

u1 is adding an expense in the group g1.

u1 paid 1000 Rs

each user of g1 owes an equal amount (the exact amount will depend on the

number of users in group g1. Say g1 has 5

users, then the amount owed by each will be 200Rs).

 u1 Expense u2 u3 u4 iPay 1000 Equal Desc Last night dinner 



u1 is adding an expense with users u2, u3 and u4.

u1 paid 1000 Rs

each user owes an equal amount - 250Rs.

 u1 Expense u2 u3 iPay 1000 Percent 20 30 50 Desc House rent 

u1 is adding an expense with users u2 and u3

u1 paid 1000 Rs

u1 owes 20% (200Rs), u2 owes 30% (300Rs) and u3 owes 50% (500Rs).

 u1 Expense u2 u3 u4 iPay 1000 Ratio 1 2 3 4 Desc Goa trip 

u1 is adding an expense with users u2, u3 and u4.

u1 paid 1000 Rs

u1 owes 100Rs (1 part), u2 owes 200Rs (2 parts), u3 owes 300Rs (3 parts) and

u4 owes 400Rs (4

parts).

 u1 Expense u2 u3 iPay 1000 Exact 100 300 600 Desc Groceries 

u1 is adding an expense with users u2 and u3.

u1 paid 1000 Rs

u1 owes 100Rs, u2 owes 300Rs and u3 owes 600Rs.

 u1 Expense u2 u3 MultiPay 100 300 200 Equal Desc Lunch at office 

u1 is adding an expense with users u2 and u3.

u1 paid 100 Rs, u2 paid 300Rs and u3 paid 200Rs.

Each user owes an equal amount - 200Rs.

 u1 Expense u2 u3 MultiPay 500 300 200 Percent 20 30 50 Desc Netflix
subscription 

u1 is adding an expense with users u2 and u3.

u1 paid 500 Rs, u2 paid 300Rs and u3 paid 200Rs.

u1 owes 20% (200Rs), u2 owes 30% (300Rs) and u3 owes 50% (500Rs).



Class diagrams

What will be the major classes and their attributes?

User

name

username

email

password

Expense

description

amount

currency

createdAt

Participants

paidBy

paidFor

Group

Group

name

Members

Admins

CreatedBy

Draw the class diagram.

User

-String name

-String username

-String email

-String hashedPassword

Expense

-String description

-Double amount

-String currency

-Date createdAt

-List participants

-Map paidBy

-Map paidFor

-Group group

Group

-String name

-List members

-List admins

-User createdBy



!!! Note

The class diagram can be optimised further. Think about it.

Schema design

What will be the tables and their columns?

User -  USERS 
id

name

username

email

password

Expense -  EXPENSES 
id - PK

description - VARCHAR(255)

amount - DOUBLE

currency - VARCHAR(3)

createdAt - DATETIME

groupId - FK

Group -  GROUPS 
id - PK

name - VARCHAR(255)

createdBy - FK

createdAt - DATETIME

 Mapping  -  GROUP_MEMBERS 
groupId - FK

userId - FK

 Mapping  -  GROUP_ADMINS 
groupId - FK

userId - FK

 Mapping  -  EXPENSE_PARTICIPANTS 
expenseId - FK

userId - FK



USERS

int id

string name

string username

string email

string password

EXPENSES

int id

string description

double amount

string currency

datetime createdAt

int groupId

GROUPS

int id

string name

int createdBy

datetime createdAt

GROUP_MEMBERS

int groupId

int userId

GROUP_ADMINS

int groupId

int userId

EXPENSE_PARTICIPANTS

int expenseId

int userId

contains contains

contains

contains

contains

contains

contains


