
Creational design patterns - Singleton and
Builder

Creational design patterns - Singleton and Builder

Key terms

Design patterns

Creational design patterns

Singleton

Builder

Singleton

Problem

Solution

Simple singleton

Thread-safe singleton

Double-checked locking

Summary

Builder

Problems

Constructor with a hash map

Inner class

Summary

Reading list

Key terms

Design patterns

A design pattern is a general, reusable solution to a commonly occurring problem

within a given context in software design. Design patterns are formalized best

practices that the programmer can use to solve common problems when designing an

application or system.

Creational design patterns

Creational design patterns provide various object creation mechanisms, which

increase flexibility and reuse of existing code.

Singleton

The singleton pattern is a software design pattern that restricts the instantiation of a

class to one object. This is useful when exactly one object is needed to coordinate

actions across the system.

Builder

Builder is a creational design pattern that lets you construct complex objects step by

step. The pattern allows you to produce different types and representations of an

object using the same construction code.

Singleton

Problem

 Shared resource - Imagine you have a class that is responsible for managing the

database connection. You want to make sure that only one instance of this class exists

in your application. If you create multiple instances of this class, you will end up with

multiple database connections, which is not what you want. Similarly, there can be a

class that is responsible for managing the logging mechanism. You want to make sure

that only one instance of this class exists in your application. If you create multiple

instances of this class, you will end up with multiple log files, which is not what you

want.

 Single access point - Applications often require configuration. For example, you
might want to configure the database connection parameters. You want to make sure

that only one instance of this class exists in your application. A configuration class

should have a single access point to the configuration parameters. If you create

multiple instances of this class, you will end up with multiple configuration files.

Solution

Singleton pattern is a creational design pattern that lets you ensure that a class has only

one instance, while providing a global access point to this instance. To implement the

Singleton patter, the following steps are required:

 Constructor hiding - The constructor of the singleton class should be private or

protected. This will prevent other classes from instantiating the singleton class.

 Global access point - The singleton class should provide a global access point to

get the instance of the singleton class. This global access point should be static and

should return the same instance of the singleton class every time it is called. If the

instance does not exist, it should create the instance and then return it.

Simple singleton

The first step is to hide the constructor by making it private. This will prevent other classes

from instantiating the singleton class.

public class Database {
 private Database() {
 }
}

The above code restricts the instantiation of the Database class. Now, we need to provide

a global access point to get the instance of the Database class. We can do this by creating

a static method that returns the instance of the Database class. If the instance does not

exist, it should create the instance and then return it.

public class Database {
 private static Database instance = new Database();

 private Database() {
 }

 public static Database getInstance() {
 return instance;
 }
}

To implement the getInstance() method, we need to create a static variable of the

Database class. This variable will hold the instance of the Database class. We will initialize

this variable to null. The getInstance() method will check if the instance variable is null. If it

is null, it will create a new instance of the Database class and assign it to the instance

variable. Finally, it will return the instance variable. This is known as lazy initialization.

public class Database {
 private static Database instance = null;

 private Database() {
 }

 public static Database getInstance() {
 if (instance == null) {
 instance = new Database();
 }
 return instance;
 }
}

Thread-safe singleton

The above code is not thread-safe. If two threads call the getInstance() method at the

same time, both threads will check if the instance variable is null. Both threads will find

that the instance variable is null. Both threads will create a new instance of the Database

class. This will result in two instances of the Database class. To make the above code

thread-safe, we can make the getInstance() method synchronized.

public class Database {
 private static Database instance = null;

 private Database() {
 }

 public static synchronized Database getInstance() {
 if (instance == null) {
 instance = new Database();
 }
 return instance;
 }
}

Double-checked locking

The above code is thread-safe. However, it is not efficient. If two threads call the

getInstance() method at the same time, both threads will check if the instance variable is

null. Both threads will find that the instance variable is null. Both threads will wait for the

lock to be released. Once the lock is released, one thread will create a new instance of the

Database class. The other thread will wait for the lock to be released. Once the lock is

released, it will create a new instance of the Database class. This will result in two

instances of the Database class. To make the above code efficient, we can use double-

checked locking.

public class Database {
 private static Database instance = null;

 private Database() {
 }

 public static Database getInstance() {
 if (instance == null) {
 synchronized (Database.class) {
 if (instance == null) {
 instance = new Database();
 }
 }
 }
 return instance;
 }
}

Summary

The singleton pattern is a creational design pattern that lets you ensure that a class

has only one instance, while providing a global access point to this instance.

Use cases of singleton pattern

Shared resource like database connection, logging mechanism

Object that should be instantiated only once like configuration object

Hide the constructor of the singleton class by making it private so that other classes

cannot instantiate the singleton class.

Add a static method that returns the instance of the singleton class. If the instance

does not exist, it should create the instance and then return it.

Thread safety

Make the getInstance() method synchronized.

Use double-checked locking.

Builder

Problems

 Complex object creation - There are multiple ways to create an object, but
constructors are the primary technique used for creating instances of a class.

However, constructors become unmanageable when there is a need to create an

object with many parameters. This is known as the telescoping constructor anti-

pattern. The telescoping constructor anti-pattern is a code smell that indicates that

the class has too many constructors. This is a code smell because it is difficult to

maintain and extend the class.

 Validation and failing object creation - There are cases when you want to
validate the parameters before creating an object. For example, you might want to

validate the parameters before creating a database connection. If the parameters are

invalid, you might want to throw an exception. However, if we use the default

constructor, we cannot fail object creation.

 Immutability - Mutable objects are objects whose state can be changed after they

are created. Immutable objects are objects whose state cannot be changed after they

are created. Immutable objects are easier to maintain and extend whereas mutable

objects can lead to bugs. However, if we use the default constructor, we cannot create

immutable objects.

Constructor with a hash map

The above problems can be solved using a constructor with a hash map. The constructor

will take a hash map as a parameter. The hash map will contain the parameters and their

values. The constructor will validate the parameters and create the object.

public class Database {
 private String host;
 private int port;
 private String username;
 private String password;

 public Database(Map<String, String> config) {
 if (config.containsKey("host")) {
 this.host = config.get("host");
 }
 if (config.containsKey("port")) {
 this.port = Integer.parseInt(config.get("port"));
 }
 if (config.containsKey("username")) {
 this.username = config.get("username");
 }
 if (config.containsKey("password")) {
 this.password = config.get("password");
 }
 }
}

Some problems with the above code are:

 Type safety - A hash map cannot have values with different types. If we want to use

different types, we need to use a hash map with a string key and an object value.

However, this will result in a runtime error if we try to cast the object to the wrong

type.

 Defined parameters - With the above approach, identifying the parameters is

difficult. We need to read the code to identify the parameters. This is not a good

approach because it is difficult to maintain and extend the code.

Inner class

Instead of using a hash map, we can use a class to accept parameters for object creation.

The parameter class is type safe, and it is easy to identify the parameters.

public class Database {
 private String host;
 private int port;
 private String username;
 private String password;

 public Database(DatabaseParameters parameter) {
 this.host = parameter.host;
 this.port = parameter.port;
 this.username = parameter.username;
 this.password = parameter.password;
 }
}

class DatabaseParameters {
 public String host;
 public int port;
 public String username;
 public String password;
}

The above code is type safe. However, it is not easy to use. We need to create an instance

of the DatabaseParameters class and then pass it to the Database class. This is not a good

approach because it is difficult to maintain and extend the code. Similarly, if we even want

to change a single parameter name, we have to open the database class for modification.

Instead, we should move the destructuring of the parameter class and validation logic to

the Parameter class. This will require creating a Database constructor with all the fields.

Again, why would developers not just want to use the constructor instead?

So we need a way to allow the parameter class to create the Database object while not

exposing a constructor. This can be done using an inner class. This inner class is known as

the builder class.

public class Database {
 private String host;
 private int port;
 private String username;
 private String password;

 private Database() {
 }

 public static class DatabaseBuilder {
 private String host;
 private int port;
 private String username;
 private String password;

 public Database build() {
 Database database = new Database();
 database.host = this.host;
 database.port = this.port;
 database.username = this.username;
 database.password = this.password;
 return database;
 }
 }
}

The above code now allows us to create a Database object using the DatabaseBuilder

class. We can fail object creation by adding a validation hook to the build method. The

objects created are immutable because the Database class does not have any setters. And

the developer can create objects with any permutation of parameters.

Database database = new Database.DatabaseBuilder()
 .host("localhost")
 .port(3306)
 .username("root")
 .password("password")
 .build();

Summary

The builder pattern is a creational design pattern that lets you construct complex

objects step by step. The pattern allows you to produce different types and

representations of an object using the same construction code.

Use cases of builder pattern

Complex object creation - Telescoping constructor anti-pattern

Validation and failing object creation

Immutability

Add a static inner class to the class that you want to create. This inner class is known

as the builder class.

Add a private constructor to the class that you want to create. This constructor will be

used by the builder class to create the object.

Implement the build() method in the builder class. This method will return the

object created by the private constructor.

Add a method for each parameter in the builder class. This method will set the

parameter value and return the builder class instance.

Reading list

Telescoping constructor anti-pattern (https://www.vojtechruzicka.com/avoid-telescoping-

constructor-pattern/)

Why objects should be immutable? (https://octoperf.com/blog/2016/04/07/why-objects-must-be-

immutable)

https://www.vojtechruzicka.com/avoid-telescoping-constructor-pattern/
https://www.vojtechruzicka.com/avoid-telescoping-constructor-pattern/
https://octoperf.com/blog/2016/04/07/why-objects-must-be-immutable
https://octoperf.com/blog/2016/04/07/why-objects-must-be-immutable

