
Exceptions and Decorators
• Exceptions and Decorators

◦ Exceptions
▪ Types of Exceptions
▪ Exception Hierarchy
▪ Creating Custom Exceptions
▪ Exception Handling

▪ The raise keyword
▪ The try and except keywords
▪ The finally keyword

▪ The golden Rules of Exception Handling
◦ Decorators
◦ Why Use Decorators?
◦ Popular Decorators in Python

▪ 1. @staticmethod and @classmethod

▪ 2. @property

▪ 3. @classmethod and @staticmethod

◦ Creating Custom Decorators

Exceptions
An exception is an event that occurs during the execution of a program that disrupts the
normal flow of instructions. An exception is an object that wraps an error event that occurred
within a method and contains:

• Information about the error including its type
• The state of the program when the error occurred
• Optionally, other custom information about the error

Types of Exceptions
In Python, the exceptions are categorized into two types:

1. Built-in Exceptions - These exceptions are raised when Python interpreter

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

encounters an error. Examples: ZeroDivisionError , TypeError , NameError ,
etc.

2. User-defined Exceptions - Developers can create their own custom exceptions
to handle specific error conditions.

Exception Hierarchy
All built-in exceptions are derived from the base class BaseException, which itself is derived
from object. The BaseException class has three subclasses that correspond to the exception
classes that are raised when Python interpreter encounters an error:

1. SystemExit - Raised when Python interpreter is quit by using the sys.exit()
function. If not handled in the code, it causes the interpreter to exit.

2. KeyboardInterrupt - Raised when the user hits the interrupt key (Ctrl+C or
Delete). If not handled in the code, it causes the interpreter to exit.

3. Exception - This is the base class for all built-in exceptions. It is derived from
BaseException. All other built-in exceptions are derived from this class.

Creating Custom Exceptions
In Python, users can define custom exceptions by creating a new class. This exception class
has to be derived, either directly or indirectly, from the built-in Exception class. Most of the
built-in exceptions are also derived from this class. The following example shows how to
create a custom exception class:

class CustomException(Exception):

pass

Exception Handling

The raise keyword

Developers can raise exceptions explicitly using the raise statement. This can be useful when
a certain condition is met and the program needs to indicate an exceptional situation.

def divide(a, b):

if b == 0:

raise ValueError("Cannot divide by zero")

return a / b

try:

result = divide(10, 0)

except ValueError as e:

print(f"Error: {e}")

In the above example, if the denominator b is zero, a ValueError is raised explicitly.

You can also throw custom exceptions using the raise statement. For example:

class CustomException(Exception):

pass

def divide(a, b):

if b == 0:

raise CustomException("Cannot divide by zero")

return a / b

The try and except keywords

The try statement allows you to define a block of code to be tested for errors while it is being
executed. The except statement allows you to define a block of code to be executed, if an
error occurs in the try block. The try and except keywords come in pairs.

try:

do something

except:

handle exception

If an exception occurs in the try block, the program execution will jump immediately to the
except block. If no exception occurs, the except block will be skipped.

You can also specify the type of exception to be handled in the except block. For example:

try:

do something

except ValueError:

handle ValueError

In the above example, the except block will only handle ValueError exceptions. If any other
exception occurs, it will not be handled by the except block. You can also specify multiple
exception types to be handled in the except block. For example:

try:

do something

except (ValueError, TypeError):

handle ValueError and TypeError

If the handling logic for different exceptions is different, you can specify multiple except
blocks to handle each exception type separately. For example:

try:

do something

except ValueError:

handle ValueError

except TypeError:

handle TypeError

The finally keyword

The finally block is used to define a block of code that will be executed, no matter if there is
an exception or not. For example:

try:

do something

except ValueError:

handle ValueError

finally:

do something

The finally block will be executed even if there is no exception in the try block. The finally

block is useful for releasing external resources (such as files or network connections),
regardless of whether the use of the resource was successful.

The golden Rules of Exception Handling
1. Never swallow an exception - Swallowing an exception means that you catch

it and do nothing with it. This is a bad practice because it means that you are
ignoring the fact that an error occurred, which could cause your program to
behave in unexpected ways and hide bugs.

try:

result = divide(10, 0)

except ValueError:

pass

2. Never catch a generic exception - Catching a generic exception means that
you are catching all exceptions. This is a bad practice because it means that you
are not handling exceptions in a meaningful way. You should always catch
specific exceptions and handle them appropriately.

try:

result = divide(10, 0)

except Exception:

handle exception

3. Never throw a generic exception - Raise specific exceptions instead of
generic ones. This is a good practice because it allows you to handle different
exceptions in different ways.

if b == 0:

raise Exception("Cannot divide by zero")

4. Use context managers for resources that need to be released - Context
managers are a good way to ensure that resources are released when they are no
longer needed. For example, when you open a file, you should use a context
manager to ensure that the file is closed when you are done with it.

try:

with open("example.txt", "r") as file:

Code to read from the file

except FileNotFoundError:

print("File not found.")

Decorators
Decorators are a powerful and flexible feature in Python that allows the modification of
functions or methods at the time of their definition. They provide a way to wrap or modify the
behavior of functions without changing their source code. Decorators are widely used for
various purposes, such as logging, access control, memoization, and more.

Why Use Decorators?
1. Code Reusability: Decorators allow you to encapsulate reusable functionality

and apply it to multiple functions or methods.
2. Separation of Concerns: Decorators help separate the core logic of a function

from additional concerns or behaviors. This promotes a cleaner and more
maintainable codebase.

3. Readability: Decorators can enhance the readability of code by keeping the main
logic of a function uncluttered with additional functionalities.

4. Code Organization: Decorators enable the organization of cross-cutting
concerns in a modular way, making it easier to manage and maintain the code.

5. Meta-Programming: Decorators enable meta-programming by modifying the
behavior of functions dynamically.

Popular Decorators in Python

1. @staticmethod and @classmethod

These decorators are built-in and are used for defining static and class methods in a class.

class MyClass:

@staticmethod

def static_method():

print("This is a static method.")

@classmethod

def class_method(cls):

print(f"This is a class method of {cls}.")

2. @property

The @property decorator allows you to define a method that can be accessed like an
attribute.

class Circle:

def __init__(self, radius):

self._radius = radius

@property

def radius(self):

return self._radius

@property

def area(self):

return 3.14 * self._radius ** 2

3. @classmethod and @staticmethod

These decorators are used to define class methods and static methods in a class,
respectively.

class MathOperations:

@classmethod

def add(cls, x, y):

return x + y

@staticmethod

def multiply(x, y):

return x * y

Creating Custom Decorators
Creating a decorator involves defining a function that takes another function as its argument,
performs some actions before or after the original function is called, and returns a new
function.

Here is an example of a simple decorator:

def my_decorator(func):

def wrapper(*args, **kwargs):

print("Something is happening before the function is called.")

result = func(*args, **kwargs)

print("Something is happening after the function is called.")

return result

return wrapper

@my_decorator

def say_hello():

print("Hello!")

say_hello()

In this example, my_decorator is a decorator that prints messages before and after the
say_hello function is called. The @my_decorator syntax is a shorthand for
say_hello = my_decorator(say_hello) .

	Exceptions and Decorators
	Exceptions
	Types of Exceptions
	Exception Hierarchy
	Creating Custom Exceptions
	Exception Handling
	The raise keyword
	The try and except keywords
	The finally keyword

	The golden Rules of Exception Handling

	Decorators
	Why Use Decorators?
	Popular Decorators in Python
	1. @staticmethod and @classmethod
	2. @property
	3. @classmethod and @staticmethod

	Creating Custom Decorators

