mirror of
https://github.com/dholerobin/Lecture_Notes.git
synced 2025-07-01 13:06:29 +00:00
Feat: Backtracking Notes
This commit is contained in:
parent
0bb30e9451
commit
d72c7f29aa
@ -28,7 +28,8 @@ _For example_, we compute factorial n if we know factorial of (n-1). The base ca
|
|||||||
Power
|
Power
|
||||||
-----
|
-----
|
||||||
|
|
||||||
> Given n, k. Find $n^k$
|
> Given n, k.
|
||||||
|
Find $n^k$
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def pow(n, k):
|
def pow(n, k):
|
||||||
@ -199,9 +200,10 @@ Because we can have negative values in the array as well and this condition will
|
|||||||
For eg,
|
For eg,
|
||||||
target = 6
|
target = 6
|
||||||
1, 2, 3 is good, but
|
1, 2, 3 is good, but
|
||||||
1, 2, 3, -1, 1 is also good.
|
1, 2, 3, -1, 1 is also good. <br>
|
||||||
__Time Complexity__: $O(2^n)$
|
__Time Complexity__: O(2^n)
|
||||||
__Space Complexity__: $O(n)$
|
<br>
|
||||||
|
__Space Complexity__: O(n)
|
||||||
|
|
||||||
Number of Subsets with a given Sum (Repetition Allowed)
|
Number of Subsets with a given Sum (Repetition Allowed)
|
||||||
---------------
|
---------------
|
||||||
@ -211,6 +213,8 @@ Number of Subsets with a given Sum (Repetition Allowed)
|
|||||||
The subsetSum2 problem can be divided into two subproblems.
|
The subsetSum2 problem can be divided into two subproblems.
|
||||||
- Include the current element in the sum and recur for the rest of the array. Here the value of i is not incremented to incorporate the condition of including multiple occurances of a element.
|
- Include the current element in the sum and recur for the rest of the array. Here the value of i is not incremented to incorporate the condition of including multiple occurances of a element.
|
||||||
- Exclude the current element from the sum and recur (i = i + 1) for the rest of the array.
|
- Exclude the current element from the sum and recur (i = i + 1) for the rest of the array.
|
||||||
|
|
||||||
|
|
||||||

|

|
||||||
```python
|
```python
|
||||||
def subsetSum2(A,N,cur_sum, i, target):
|
def subsetSum2(A,N,cur_sum, i, target):
|
||||||
@ -225,8 +229,9 @@ def subsetSum2(A,N,cur_sum, i, target):
|
|||||||
no_take = subsetSum2(A,N,cur_sum, i+1, target)
|
no_take = subsetSum2(A,N,cur_sum, i+1, target)
|
||||||
return take + no_take
|
return take + no_take
|
||||||
```
|
```
|
||||||
__Time Complexity__ : $O(2 ** (Target/MinElement))$
|
__Time Complexity__ : _O(2 *(Target/MinElement))_
|
||||||
__Space Complexity__: $O(Target/Min Element)$
|
<br>
|
||||||
|
__Space Complexity__: _O(Target/Min Element)_
|
||||||
|
|
||||||
|
|
||||||
|
|
164
Recursion and Backtracking/2.md
Normal file
164
Recursion and Backtracking/2.md
Normal file
@ -0,0 +1,164 @@
|
|||||||
|
Backtracking
|
||||||
|
------------
|
||||||
|
|
||||||
|
Backtracking is a methodical way of trying out various sequences of decisions, until you find one that “works”. It is a systematic way to go through all the possible configurations of a search space.
|
||||||
|
- do
|
||||||
|
- recurse
|
||||||
|
- undo
|
||||||
|
|
||||||
|
Backtracking is easily implemented with recursion because:
|
||||||
|
- The run-time stack takes care of keeping track of the choices that got us to a given point.
|
||||||
|
- Upon failure we can get to the previous choice simply by returning a failure code from the recursive call.
|
||||||
|
|
||||||
|
Backtracking can help reduce the space complexity, because we're reusing the same storage.
|
||||||
|
|
||||||
|
__Backtracking Algorithm__:
|
||||||
|
Backtracking is really quite simple--we “explore” each node, as follows:
|
||||||
|
```python
|
||||||
|
To “explore” node N:
|
||||||
|
1. If N is a goal node, return “success”
|
||||||
|
2. If N is a leaf node, return “failure”
|
||||||
|
3. For each child C of N,
|
||||||
|
3.1. Explore C
|
||||||
|
3.1.1. If C was successful, return “success”
|
||||||
|
4. Return “failure”
|
||||||
|
```
|
||||||
|
Print all Permutations of a String
|
||||||
|
-------------
|
||||||
|
> A permutation, also called an “arrangement number” or “order,” is a rearrangement of the elements of an ordered string S into a one-to-one correspondence with S itself. <br>
|
||||||
|
String: ABC <br>
|
||||||
|
Permutations: ABC ACB BAC BCA CBA CAB
|
||||||
|
|
||||||
|
Total permutations = n!
|
||||||
|
|
||||||
|
<img src="https://user-images.githubusercontent.com/35702912/66570095-7e63e180-eb8a-11e9-8e3c-31d8e04f2d67.jpg" width="500"
|
||||||
|
/>
|
||||||
|
<img src="https://user-images.githubusercontent.com/35702912/66570104-83c12c00-eb8a-11e9-802d-f0f0ede4a14a.jpg" width="500"
|
||||||
|
/>
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
def permute(S, i):
|
||||||
|
if i == len(S):
|
||||||
|
print(S)
|
||||||
|
for j in range(i, len(S)):
|
||||||
|
S[i], S[j] = S[j], S[i]
|
||||||
|
permute(S, i+1)
|
||||||
|
S[i], S[j] = S[j], S[i] # backtrack
|
||||||
|
```
|
||||||
|
__Time Complexity:__ _O(n*n!)_ because there are n! permutations and it requires _O(n)_ to print a permutation.
|
||||||
|
<br>
|
||||||
|
__Space Complexity:__ _O(n)_
|
||||||
|
|
||||||
|
_Note: Output not in Lexicographic Order._
|
||||||
|
|
||||||
|
Print all Unique Permutations of a String
|
||||||
|
--------------------
|
||||||
|
> String: AAB
|
||||||
|
> Permutations: AAB ABA BAA
|
||||||
|
|
||||||
|
Basically, if we're swapping S[i] with S[j], but S[j] already occured earlier from S[i] .. S[j-1], then swapping will result in repetition.
|
||||||
|
|
||||||
|
|
||||||
|
<img src="https://user-images.githubusercontent.com/35702912/66570690-bc153a00-eb8b-11e9-8a00-9dfb728df5f9.jpg" width="500"
|
||||||
|
/>
|
||||||
|
|
||||||
|
```python
|
||||||
|
def permute_distinct(S, i):
|
||||||
|
if i == len(S):
|
||||||
|
print(S)
|
||||||
|
for j in range(i, len(S)):
|
||||||
|
if S[j] in S[i:j]:
|
||||||
|
continue
|
||||||
|
S[i], S[j] = S[j], S[i]
|
||||||
|
permute_distinct(S, i+1)
|
||||||
|
S[i], S[j] = S[j], S[i] # backtrack
|
||||||
|
```
|
||||||
|
__Time Complexity:__ _O(n*n!)_ <br>
|
||||||
|
__Space Complexity:__ _O(n)_
|
||||||
|
|
||||||
|
Print Permutations Lexicographically
|
||||||
|
---
|
||||||
|
> Given a string, print all permutations of it in sorted order. <br>
|
||||||
|
For example, if the input string is “ABC”, then output should be “ABC, ACB, BAC, BCA, CAB, CBA”.
|
||||||
|
|
||||||
|
- Right shift the elements before making the recursive call.
|
||||||
|
- Left shift the elements while backtracking.
|
||||||
|
|
||||||
|
```python
|
||||||
|
def permute(S, i):
|
||||||
|
if i == len(S):
|
||||||
|
print(S)
|
||||||
|
for j in range(i, len(S)):
|
||||||
|
S[i], S[j] = S[j], S[i]
|
||||||
|
permute(S, i+1)
|
||||||
|
S[i], S[j] = S[j], S[i] # backtrack
|
||||||
|
```
|
||||||
|
|
||||||
|
__Time Complexity:__ _O(n* n*n!)_ <br>
|
||||||
|
__Space Complexity:__ _O(n)_
|
||||||
|
|
||||||
|
Kth Permutation Sequence (Optional)
|
||||||
|
----
|
||||||
|
> Given a string of length n containing lowercase alphabets only. You have to find the k-th permutation of string lexicographically.
|
||||||
|
|
||||||
|
|
||||||
|
$\dfrac{k}{(n-1)!}$ will give us the index of the first digit. Remove that digit, and continue.
|
||||||
|
|
||||||
|
```python
|
||||||
|
def get_perm(A, k):
|
||||||
|
perm = []
|
||||||
|
while A:
|
||||||
|
# get the index of current digit
|
||||||
|
div = factorial(len(A)-1)
|
||||||
|
i, k = divmod(k, div)
|
||||||
|
perm.append(A[i])
|
||||||
|
# remove handled number
|
||||||
|
del A[index]
|
||||||
|
return perm
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Sorted Permutation Rank (Optional)
|
||||||
|
--
|
||||||
|
> Given S, find the rank of the string amongst its permutations sorted lexicographically.
|
||||||
|
Assume that no characters are repeated.
|
||||||
|
|
||||||
|
```python
|
||||||
|
Input : 'acb'
|
||||||
|
Output : 2
|
||||||
|
The order permutations with letters 'a', 'c', and 'b' :
|
||||||
|
abc
|
||||||
|
acb
|
||||||
|
bac
|
||||||
|
bca
|
||||||
|
cab
|
||||||
|
cba
|
||||||
|
```
|
||||||
|
**Hint:**
|
||||||
|
If the first character is X, all permutations which had the first character less than X would come before this permutation when sorted lexicographically.
|
||||||
|
|
||||||
|
Number of permutation with a character C as the first character = number of permutation possible with remaining $N-1$ character = $(N-1)!$
|
||||||
|
|
||||||
|
**Approach:**
|
||||||
|
rank = number of characters less than first character * (N-1)! + rank of permutation of string with the first character removed
|
||||||
|
```
|
||||||
|
Lets say out string is “VIEW”.
|
||||||
|
Character 1 : 'V'
|
||||||
|
All permutations which start with 'I', 'E' would come before 'VIEW'.
|
||||||
|
Number of such permutations = 3! * 2 = 12
|
||||||
|
Lets now remove ‘V’ and look at the rank of the permutation ‘IEW’.
|
||||||
|
|
||||||
|
Character 2 : ‘I’
|
||||||
|
All permutations which start with ‘E’ will come before ‘IEW’
|
||||||
|
Number of such permutation = 2! = 2.
|
||||||
|
Now, we will limit ourself to the rank of ‘EW’.
|
||||||
|
|
||||||
|
Character 3:
|
||||||
|
‘EW’ is the first permutation when the 2 permutations are arranged.
|
||||||
|
So, we see that there are 12 + 2 = 14 permutations that would come before "VIEW".
|
||||||
|
Hence, rank of permutation = 15.
|
||||||
|
```
|
||||||
|
|
||||||
|
|
111
Recursion and Backtracking/3.md
Normal file
111
Recursion and Backtracking/3.md
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
Number of Squareful Arrays
|
||||||
|
--------------------------
|
||||||
|
> Given A[N]
|
||||||
|
> array is squareful if for every pair of adjacent elements, their sum is a perfect square
|
||||||
|
> Find and return the number of permutations of A that are squareful
|
||||||
|
>
|
||||||
|
Example:
|
||||||
|
A = [2, 2, 2]
|
||||||
|
output: 1
|
||||||
|
A = [1, 17, 8]
|
||||||
|
output: 2
|
||||||
|
[1, 8, 17], [17, 8, 1]
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
def check(a, b):
|
||||||
|
sq = int((a + b) ** 0.5)
|
||||||
|
return (sq * sq) == (a + b)
|
||||||
|
|
||||||
|
if len(A) == 1: # corner case
|
||||||
|
return int(check(A[0], 0))
|
||||||
|
|
||||||
|
count = 0
|
||||||
|
def permute_distinct(S, i):
|
||||||
|
global count
|
||||||
|
if i == len(S):
|
||||||
|
count += 1
|
||||||
|
|
||||||
|
for j in range(i, len(S)):
|
||||||
|
if S[j] in S[i:j]: # prevent duplicates
|
||||||
|
continue
|
||||||
|
|
||||||
|
if i > 0 and (not check(S[j], S[i-1])): # invalid solution - branch and bound
|
||||||
|
continue
|
||||||
|
|
||||||
|
S[i], S[j] = S[j], S[i]
|
||||||
|
permute_distinct(S, i+1)
|
||||||
|
|
||||||
|
S[i], S[j] = S[j], S[i] # backtrack
|
||||||
|
permute_distinct(A, 0)
|
||||||
|
return count
|
||||||
|
```
|
||||||
|
|
||||||
|
Gray Code
|
||||||
|
---------
|
||||||
|
|
||||||
|
> Given a non-negative integer N representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
|
||||||
|
|
||||||
|
> The gray code is a binary numeral system where two successive values differ in only one bit.
|
||||||
|
|
||||||
|
|
||||||
|
G(n+1) can be constructed as:
|
||||||
|
0 G(n)
|
||||||
|
1 R(n)
|
||||||
|
|
||||||
|
```
|
||||||
|
Example G(2) to G(3):
|
||||||
|
0 00
|
||||||
|
0 01
|
||||||
|
0 11
|
||||||
|
0 10
|
||||||
|
----
|
||||||
|
1 10
|
||||||
|
1 11
|
||||||
|
1 01
|
||||||
|
1 00
|
||||||
|
```
|
||||||
|
```python
|
||||||
|
def gray(self, n):
|
||||||
|
codes = [0, 1] # length 1
|
||||||
|
for i in range(1, n):
|
||||||
|
new_codes = [s | (1 << i) for s in reversed(codes)]
|
||||||
|
codes += new_codes
|
||||||
|
return codes
|
||||||
|
```
|
||||||
|
|
||||||
|
N Queens
|
||||||
|
--------
|
||||||
|
|
||||||
|
[NQueens - InterviewBit](https://www.interviewbit.com/problems/nqueens/)
|
||||||
|
Backtracking
|
||||||
|
- Place one queen per row
|
||||||
|
- backtrack if failed
|
||||||
|
|
||||||
|
Word Break II
|
||||||
|
-------------
|
||||||
|
> Given a string A and a dictionary of words B, add spaces in A to construct a sentence where each word is a valid dictionary word.
|
||||||
|
```
|
||||||
|
Input 1:
|
||||||
|
A = "catsanddog",
|
||||||
|
B = ["cat", "cats", "and", "sand", "dog"]
|
||||||
|
|
||||||
|
Output 1:
|
||||||
|
["cat sand dog", "cats and dog"]
|
||||||
|
```
|
||||||
|
```python
|
||||||
|
def wordBreak(A, B):
|
||||||
|
B = set(B)
|
||||||
|
sents = []
|
||||||
|
def foo(i, start, sent):
|
||||||
|
word = A[start:i+1]
|
||||||
|
if i == len(A):
|
||||||
|
if word in B:
|
||||||
|
sents.append((sent + ' ' + word).strip())
|
||||||
|
return
|
||||||
|
|
||||||
|
if word in B:
|
||||||
|
foo(i+1, i+1, sent + ' ' + word)
|
||||||
|
foo(i+1, start, sent)
|
||||||
|
foo(0, 0, '')
|
||||||
|
```
|
Loading…
x
Reference in New Issue
Block a user