mirror of
https://github.com/dholerobin/Lecture_Notes.git
synced 2025-09-13 13:52:12 +00:00
Add all my notes
This commit is contained in:
236
imperfect_notes/pragy/Maths 3 - Modular Arithmetic.md
Normal file
236
imperfect_notes/pragy/Maths 3 - Modular Arithmetic.md
Normal file
@@ -0,0 +1,236 @@
|
||||
Maths 3 - Modular Arithmetic
|
||||
----------------------------
|
||||
|
||||
|
||||
|
||||
Arithmetic of Remainders
|
||||
|
||||
$x % m$ gives a value $\in [0, m-1]$
|
||||
|
||||
|
||||
Say m = 4
|
||||
|
||||
**Property 1 - Modulus repeats**
|
||||

|
||||
|
||||
Since 1, 5, 10 have the same modulus, they can be said to be "modular equivalent wrt 5"
|
||||
|
||||
$0 \equiv 5 \equiv 10 \mod 5$
|
||||
$1 \equiv 6 \equiv 11 \mod 5$
|
||||
-- --
|
||||
|
||||
Linearity of remainders
|
||||
-----------------------
|
||||
|
||||
Remainder of sums is the sum of remainders (modular-sum)
|
||||
|
||||
**Incorrect:** $(a+b) \% m = a \% m + b \% m$
|
||||
|
||||
This is wrong, because (m-1) + (m-1) = (2m-2) can be >= m
|
||||
|
||||
**Correct:** $(a+b) \% m = \Bigl ( a \% m + b \% m \Bigr ) \% m$
|
||||
|
||||
**Linearity works for both +ve and negative.**
|
||||
But, we need numbers to be $\in [0, m-1]$
|
||||
|
||||
So, negative modulus values can be fixed by simply adding $m$
|
||||
|
||||
$(10 - 4) \% 7$
|
||||
$= (10 \% 7 - 4 \% 7) \% 7$
|
||||
$= (3 - 4) \% 7$
|
||||
$= -1 \% 7$
|
||||
$= -1 + 7$
|
||||
$= 6$
|
||||
|
||||
**Distributive over multiplication, addition, substraction but not division.**
|
||||
|
||||
-- --
|
||||
|
||||
Count Pairs
|
||||
-----------
|
||||
|
||||
|
||||
> Given A[N]. non-negative integers.
|
||||
> Given m
|
||||
> Count number of pairs (i, j), such that a[i] + a[j] is divisible by m
|
||||
>
|
||||
|
||||
|
||||
**Brute Force:** $O(n^2)$
|
||||
|
||||
Example:
|
||||
> A = [2 2 1 7 5 3], m = 4
|
||||
> answer = 5
|
||||
> (2,2), (1, 7), (1, 3), (7, 5), (5, 3)
|
||||
|
||||
**Optimized:**
|
||||
Instead of thinking of remainders of sum, think of sum of remainders.
|
||||
|
||||
That is, if I've an element which gives remainder $x$, then it can be paired with an element which gives remainder $m-x$
|
||||

|
||||
Keep counts for each remainder. Finally, count the number of pairs
|
||||
|
||||
> 0 - 0
|
||||
> 1 - 2
|
||||
> 2 - 2
|
||||
> 3 - 2
|
||||
> So, $\dfrac{c_0 (c_0-1)}2 + (c_1 \times c_3) + \dfrac{c_2 (c_2-1)}2$
|
||||
> $= 0 + 4 + 2 = 6$
|
||||
>
|
||||
|
||||
Special cases for remainders is 0, n/2
|
||||
Note: loop till m/2 so that you don't double count
|
||||
|
||||
```python
|
||||
total = count[0] choose 2
|
||||
if m % 2 ==0:
|
||||
total += count[m/2] choose 2
|
||||
else:
|
||||
total += count[m//2] + count[m//2 + 1]
|
||||
|
||||
for i <- 1 .. m/2-1:
|
||||
total += count[i] * count[m-i]
|
||||
```
|
||||
|
||||
|
||||
Complexity: Time: $O(n + m)$ Space: $O(m)$
|
||||
-- --
|
||||
|
||||
Count Triplets
|
||||
--------------
|
||||
|
||||
> Given A[N] with non-negative integers
|
||||
> Given m, find the number of triplets such that sum is divisible by m
|
||||
>
|
||||
|
||||
Think in terms of the last question
|
||||
|
||||
**Brute Force**: $O(n^3)$
|
||||
|
||||
**With last approach:** $O(n + m^2)$
|
||||
|
||||
1. Bucket
|
||||
2. Choose 2 mods: a, b. Third mod c = m - (a+b)
|
||||
3. Count total
|
||||
4. All 3 from same bucket - for 0 and m//3
|
||||
5. 2 from same bucket, one from other bucket
|
||||
6. all 3 from different buckets
|
||||
|
||||

|
||||
|
||||
So, fix two buckets, so 3rd can be chosen
|
||||
|
||||
Enforce two things:
|
||||
1. i <= j <= k otherwise, repetitions can happen
|
||||
2. i + j + k = 0 or i + j + k = m
|
||||
|
||||
|
||||
```python
|
||||
total = 0
|
||||
|
||||
for i <- 0 .. m-1:
|
||||
for j <- i .. m-1:
|
||||
k = (m - i + j) % m # explain the case when i, j are 0
|
||||
# explain that this mod should handle -ve
|
||||
# python. for c++/java, do it yourself
|
||||
if i == j == k:
|
||||
total += count[i] choose 3
|
||||
elif i == j:
|
||||
total += count[i] choose 2 * count[k]
|
||||
elif i == k:
|
||||
total += count[i] choose 2 * count[j]
|
||||
elif j == k:
|
||||
total += count[j] choose 2 * count[i]
|
||||
else:
|
||||
total += count[i] * count [j] * count[k]
|
||||
|
||||
```
|
||||
|
||||
Time: $O(n + m^2)$, Space: $O(m)$
|
||||
|
||||
|
||||
-- --
|
||||
|
||||
Balanced Paranthesis Count
|
||||
--------------------------
|
||||
|
||||
> Given N pairs of paranthesis
|
||||
> Find number of distinct balanced paranthesis
|
||||
>
|
||||
> meaning of balanced: for every prefix, number of opening braces should be >= number of closing braces
|
||||
>
|
||||
|
||||
Example
|
||||
> 0 pairs
|
||||
> 0
|
||||
>
|
||||
> 1 pair: ()
|
||||
> 1
|
||||
>
|
||||
> 2 pairs: ()(), (())
|
||||
> 2
|
||||
>
|
||||
> 3 pairs: ()()(), ()(()), (())(), (()()), ((()))
|
||||
> 5
|
||||
|
||||
Say we want to construct for n = 3
|
||||
Choose how many pairs must go inside
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
|
||||
$C_0 = 1$
|
||||
|
||||
$C_n = C_0 C_{n-1} + C_1 C_{n-2} + \cdots C_{n-1}C_0$
|
||||
|
||||
$\displaystyle C_n = \sum\limits_{i=0}^{n-1} C_i C_{n-i-1}$
|
||||
|
||||
-- --
|
||||
|
||||
Catalan numbers
|
||||
---------------
|
||||
|
||||
|
||||
Same as above
|
||||
|
||||
Time to find nth catlan number = $O(n^2)$ (because we need to compute numbers before it)
|
||||
|
||||
-- --
|
||||
|
||||
|
||||
Number of Paths
|
||||
---------------
|
||||
|
||||
> Given $m \times n$ grid, find the number of paths from (0,0) to (m-1, n-1)
|
||||
> Can only move right and down.
|
||||
|
||||
|
||||
Approach:
|
||||
- Every path will have exactly (n-1) right steps, and (m-1) down steps.
|
||||
- Only the order differs
|
||||
|
||||
So, $\dfrac{(n+m-2)!}{(n-1)! \cdot (m-1)!}$
|
||||
|
||||
Complexity? O(n+m)
|
||||
|
||||
-- --
|
||||
|
||||
Number of lower triangle paths in Square Matrix
|
||||
-----------------------------------------------
|
||||
|
||||
|
||||
> Given $n \times n$ (square) grid, find the number of paths from (0,0) to (m-1, n-1)
|
||||
> Can only move right and down.
|
||||
> Exists only in teh lower triangle
|
||||
>
|
||||
|
||||
- First move must be down
|
||||
- Number of Rs < Number of Ds at every step
|
||||
|
||||
Same as balanced parans
|
||||

|
||||
|
||||
$C_{n-1}$, because n-1 pairs of moves for $n \times n$ matrix
|
||||
|
Reference in New Issue
Block a user