mirror of
https://github.com/dholerobin/Lecture_Notes.git
synced 2025-09-13 13:52:12 +00:00
Add all my notes
This commit is contained in:
277
imperfect_notes/pragy/Maths 1 - GCD.md
Normal file
277
imperfect_notes/pragy/Maths 1 - GCD.md
Normal file
@@ -0,0 +1,277 @@
|
||||
Maths 1 - GCD
|
||||
-------------
|
||||
|
||||
Tushar - fast batch
|
||||
|
||||
|
||||
Kshitij, Sept EliteX
|
||||
|
||||
-- --
|
||||
|
||||
Some basic Maths - concepts that are used in coding questions and interviews
|
||||
|
||||
GCD / HCF
|
||||
---------
|
||||
|
||||
1. gcd(a) = largest $x$, such that $a|x$ and $b|x$
|
||||
1. GCD examples
|
||||
- 5, 15 = 5
|
||||
- 12, 8 = 4
|
||||
- 8, 16 = 8
|
||||
- 16, 8 = 8
|
||||
- 17, 1 = 1
|
||||
- 12, 1 = 1
|
||||
- 17, 0 = 17
|
||||
- 12, 0 = 12
|
||||
- -5, 0 = 5
|
||||
1. GCD Properties
|
||||
- gcd(x, 0) = |x|
|
||||
- gcd(x, 1) = 1
|
||||
- does the order matter?
|
||||
- No
|
||||
- gcd(x, y) = gcd(y, x) (commutative)
|
||||
- gcd(x, y, z) = gcd(gcd(x, y), z) = gcd(x, gcd(y, z)) (associative)
|
||||
- Analogy with
|
||||
- longest common prefix aac, aabc, aabcd
|
||||
- Set intersection
|
||||
- Whenever we're finding common things, usually order doesn't matter
|
||||
- max possible value of $gcd(a, b) = min(a, b)$ if both a, b are +ve
|
||||
|
||||
1. GCD of complete array
|
||||
- if gcd(x, y) function is given
|
||||
- simply do pairwise
|
||||
|
||||
-- --
|
||||
|
||||
Computing GCD
|
||||
-------------
|
||||
|
||||
**Brute Force**
|
||||
|
||||
```python
|
||||
def gcd(a, b):
|
||||
for i <- 2 .. min(a, b)
|
||||
if a % i == 0 and b % i == 0:
|
||||
return i
|
||||
```
|
||||
|
||||
Complexity: $O(\min(a, b))$
|
||||
-- --
|
||||
|
||||
Substraction Approach
|
||||
---------------------
|
||||
|
||||
1. $GCD(a, b) = GCD(a-b, b), \text{if } a > b$
|
||||
> $GCD(20, 6) = GCD(14, 6)$
|
||||
|
||||
**Proof**
|
||||
|
||||
1. $a = b + c$
|
||||
> $20 = 14 + 6$
|
||||
1. $GCD(a, b) = g$
|
||||
> $GCD(20, 6) = 2$
|
||||
1. Thus, $(b+c) | g$ and $b | g$
|
||||
> $(6+14)|2, 6|2$
|
||||
1. Thus, $c | g$
|
||||
> $14|2$
|
||||
1. Thus, $g = GCD(c, b)$
|
||||
> $2 = GCD(14, 6)$
|
||||
1. Hence, $GCD(a, b) = GCD(a-b, b), \text{if } a > b$
|
||||
|
||||
So, we can calculate GCD recursively
|
||||
(Chinese Mathematician)
|
||||
|
||||
```python
|
||||
def gcd(a, b):
|
||||
if a < b:
|
||||
a, b = b, a # swap
|
||||
if b == 0:
|
||||
return a
|
||||
return gcd(a-b, b)
|
||||
```
|
||||
|
||||
Time complexity - Worst case linear
|
||||
but usually much faster
|
||||
|
||||
-- --
|
||||
|
||||
Euclid Approach
|
||||
---------------
|
||||
|
||||
1. $GCD(a, b) = GCD(b, a\%b), \text{if } a > b$
|
||||
> $GCD(20, 6) = GCD(2, 6)$
|
||||
|
||||
**Proof**
|
||||
|
||||
1. $a = k \cdot b + c$
|
||||
> $20 = 3 \cdot 6 + 2$
|
||||
1. $GCD(a, b) = g$
|
||||
> $GCD(20, 6) = 2$
|
||||
1. Thus, $(k \cdot b + c) | g$ and $b | g$
|
||||
> $(3 \cdot 6 + 2)|2, 6|2$
|
||||
1. Thus, $c | g$
|
||||
> $2|2$
|
||||
1. Thus, $g = GCD(c, b)$
|
||||
> $2 = GCD(2, 6)
|
||||
1. Hence, $GCD(a, b) = GCD(a\%b, b), \text{if } a > b$
|
||||
|
||||
So, we can calculate GCD recursively
|
||||
|
||||
```python
|
||||
def gcd(a, b):
|
||||
if b == 0:
|
||||
return a
|
||||
return gcd(b, a%b)
|
||||
```
|
||||
|
||||
**Explain how the numbers are automatically swapped**
|
||||
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
Stop if divisor is 1 or remainder is 0
|
||||
|
||||
|
||||
Complexity: $O(\log_2\max(a, b))$
|
||||
|
||||
Why: after one step, max possible value of remainder is $< a/2$
|
||||
|
||||
Cases
|
||||
- $b < a/2$ - remainder $< b$, so remainder $< a/2$
|
||||
- $b > a/2$ - division eats up more than half, and remainder is less than half
|
||||

|
||||
|
||||
-- --
|
||||
|
||||
Array Factorial GCD
|
||||
-------------------
|
||||
|
||||
> Given Array A[N], find the GCD of factorials of elements of array
|
||||
>
|
||||
Naive: factorial and then gcd
|
||||
|
||||
Solution: min and then factorial
|
||||

|
||||
|
||||
-- --
|
||||
Array Susequence GCD
|
||||
--------------------
|
||||
|
||||
> Given A[N]
|
||||
> Return 1 if there is any subsequence with gcd = 1, else return 0
|
||||
>
|
||||
|
||||
Explain subsequence (can skip) vs subarray (contiguous)
|
||||
|
||||
> Example:
|
||||
> A = 4 6 3 8
|
||||
> return 1, because 4 3 has gcd 1
|
||||
> So does 3 8
|
||||
> and 4 3 8
|
||||
>
|
||||
|
||||
**Brute Force**
|
||||
|
||||
Consider all subsequences - $O(2^n)$
|
||||
|
||||
**Simple Approach:**
|
||||
Simply take gcd of the whole array
|
||||
|
||||
Why?
|
||||
|
||||
If there is any subsequence whose gcd is 1, the gcd of the entire array must also be 1
|
||||
If the gcd of entire array is 1, then there's some subsequence which causes it.
|
||||
|
||||
$GCD(\text{array}) = GCD(GCD(A, B, C), GCD(D, E, F, G))$
|
||||
$= GCD(1, GCD(D, E, F, G))$
|
||||
$= 1$
|
||||
|
||||
Complexity: $O(n \log \max)$
|
||||
|
||||
-- --
|
||||
|
||||
Delete Elements
|
||||
---------------
|
||||
|
||||
> Given A[N]
|
||||
> Give me the minimum number of element that you need to delete such that the GCD of the resulting array becomes 1
|
||||
> If can't, return -1
|
||||
|
||||
Same as previous. If 1, then delete nothing.
|
||||
Else, return -1, because deleting won't help
|
||||
|
||||
Side Note: GCD will be 0 only if all the elements are 0
|
||||
-- --
|
||||
|
||||
Delete one
|
||||
----------
|
||||
|
||||
> Given A[N]
|
||||
> Delete one element, and make the GCD maximum
|
||||
> 12, 15, 18
|
||||
> delete 15 to get GCD = 6
|
||||
>
|
||||
|
||||
Naive: $O(n^2)$
|
||||
|
||||
Note: deleting min element is not correct
|
||||
|
||||
Optimized:
|
||||
Prefix and postfix GCD
|
||||
> 12 3 3
|
||||
> 3 3 18
|
||||
>
|
||||
|
||||
Intuition: Prefix-Sum, postfix-sum to get sum of elements except A[i]
|
||||
> pre[i-1] + post[i+1] = Sum(A) - A[i]
|
||||
>
|
||||
|
||||
What property enables this? Association & commutative
|
||||
|
||||
|
||||
-- --
|
||||
|
||||
Pubg
|
||||
----
|
||||
|
||||
> Given A[N] with healths, minimize the health of the last player
|
||||
> When a attacks b, we have a, (b-a)
|
||||
> If health becomes 0, the person dies
|
||||
>
|
||||
|
||||
> 14 2 28 56
|
||||
> 12 2 28 56
|
||||
> 12 2 16 56
|
||||
> 12 0 16 56
|
||||
>
|
||||
|
||||
|
||||
Note: min is not the answer. Example, 4, 6 An is 2
|
||||
|
||||
Observation 1: smaller should attack larger, example 12, 8
|
||||
|
||||
So, smallest should attack the rest
|
||||
untill all become 1 or 0
|
||||
|
||||
same as finding the gcd of entire array
|
||||
|
||||
|
||||
-- --
|
||||
|
||||
Closed Differences
|
||||
------------------
|
||||
|
||||
> Given A[N], consider any pair $A[i], A[j]$, if the difference $|A[i] - A[j]| \notin A$, append it.
|
||||
> If no more moves can be made, stop.
|
||||
> Find the size of the final array
|
||||
>
|
||||
|
||||
$$\frac{\max A}{\rm{gcd} A} + \begin{cases}1 & \text{if } 0 \in A \\ 0 & \text{otherwise} \end{cases}$$
|
||||
|
||||
Note: $\max A$ is always divisible by GCD (duh)
|
Reference in New Issue
Block a user