mirror of
https://github.com/dholerobin/Lecture_Notes.git
synced 2025-09-13 13:52:12 +00:00
Add all my notes
This commit is contained in:
285
imperfect_notes/pragy/Bit Manipulation.md
Normal file
285
imperfect_notes/pragy/Bit Manipulation.md
Normal file
@@ -0,0 +1,285 @@
|
||||
Bit Manipulation
|
||||
----------------
|
||||
|
||||
|
||||
Bitwise AND &
|
||||
-------------
|
||||
3 & 5
|
||||
011 & 101
|
||||
= 001
|
||||
= 1
|
||||
|
||||
|
||||
Bitwise OR |
|
||||
------------
|
||||
|
||||
3 | 5
|
||||
011 | 101
|
||||
= 111
|
||||
= 7
|
||||
|
||||
XOR ^
|
||||
-----
|
||||
|
||||
Exclusive OR. Either this, or that
|
||||
That is, both bits are different.
|
||||
For more than 2 bits, True when number of on bits is odd
|
||||
|
||||
-- --
|
||||
|
||||
```
|
||||
a & 0 = 0 a & 1 = a a & a = a
|
||||
a | 0 = a a | 1 = 1 a | a = a
|
||||
a ^ 0 = a a ^ 1 = ~a a ^ a = 0
|
||||
```
|
||||
|
||||
|
||||
For all these 3 operations, associativity is followed
|
||||
|
||||
so, $a \odot b \odot c = (a \odot b) \odot c = a \odot (b \odot c)$
|
||||
|
||||
-- --
|
||||
|
||||
Masking property of XOR
|
||||
-----------------------
|
||||
|
||||
b = (a^b) ^ a
|
||||
= (a^b) ^ a
|
||||
= b ^ (a^a)
|
||||
= b^ 0
|
||||
= b
|
||||
|
||||
-- --
|
||||
|
||||
Shifts
|
||||
------
|
||||
|
||||
`<< k` - shift left by k. Insert 0 on right
|
||||
`>> k` - shift right by k.
|
||||
|
||||
`<< k` = multiply by $2^k$
|
||||
`>> k` = integer divide by $2^k$
|
||||
|
||||
show with example, say 22 = 10110
|
||||
|
||||
-- --
|
||||
|
||||
find first set bit
|
||||
------------------
|
||||
|
||||
simply loop from i = 1 to 64.
|
||||
check if x & (1<<i) is non-zero
|
||||
|
||||
-- --
|
||||
|
||||
Pair with XOR
|
||||
-------------
|
||||
|
||||
> Given A[N], find any pair of elements whose XOR is k
|
||||
>
|
||||
|
||||
**Brute Force:**
|
||||
Consider all pairs. $O(n^2)$
|
||||
|
||||
|
||||
If a[i] ^ a[j] = k, then a[j] = k ^ a[i]
|
||||
|
||||
So, for each a[i]. I need to find if k^a[i] also exists in the array.
|
||||
|
||||
Use a hashmap - O(n)
|
||||
|
||||
|
||||
**Corner Case**
|
||||
|
||||
if k = 0, we need to search for repeated elements.
|
||||
So, make sure that you handle it separately.
|
||||
If we don't handle separately, we might have to store a list of values for each number, which will be bad.
|
||||
|
||||
-- --
|
||||
|
||||
Single Out
|
||||
----------
|
||||
|
||||
> Given A[N] in which each number appears twice, except for one number. Find this number
|
||||
>
|
||||
|
||||
**Naive:**
|
||||
Hashmap. O(n) space
|
||||
|
||||
**Optimized:**
|
||||
|
||||
Masking property of xor - each repeated number will unmask itself.
|
||||
|
||||
So, simply xor the entire array.
|
||||
Space complexity: O(1)
|
||||
|
||||
a^a = 0, a^0 = a
|
||||
Order doesn't matter, so
|
||||
a ^ b ^ a ^ c ^ b
|
||||
|
||||
a's will cancel out, b's will cancel out. Left with c
|
||||
|
||||
-- --
|
||||
|
||||
Double Out
|
||||
----------
|
||||
|
||||
|
||||
> Given A[N] in which each number appears twice, except for two numbers. Find these numbers
|
||||
> 1 2 2 1 3 8 6 3
|
||||
> Return 6, 8
|
||||
>
|
||||
|
||||
**Naive:** Counter. O(n) space
|
||||
|
||||
**Optimized:**
|
||||
- x = xor of entire array. You get xor of the tw oneeded elements
|
||||
- find out any bit where the xor is set. We know that for this bit, our needed elements differ. So, partition by this bit
|
||||
- Since all other numbers come in pairs, each partition will also have the numbers in pairs
|
||||
- calculate the xor of individual partitions
|
||||
|
||||

|
||||
|
||||
|
||||
O(1) space
|
||||
|
||||
-- --
|
||||
|
||||
|
||||
Tripled
|
||||
-------
|
||||
|
||||
> Given A[N]. All elements occur thrice, exceopt one which occurs once. Find the single one.
|
||||
>
|
||||
|
||||
**Naive:** Counter. O(n) space
|
||||
|
||||
**Optimized:**
|
||||
|
||||
Since numbers occurs thrice, for each bit, the count of 1s for that bit must be a multiple of 3. If it is not, then the single number must have that bit set.
|
||||
|
||||
So, construct that single number
|
||||
|
||||

|
||||
|
||||
Complexity: $O(n \log \max)$
|
||||
|
||||
If max integer is 32 bits, then O(32n)
|
||||
|
||||
-- --
|
||||
|
||||
> Given A[N], find the pair with minimum xor
|
||||
>
|
||||
|
||||
**Brute Force:** All pairs. Keep min. $O(n^2)$
|
||||
|
||||
**Optimized:**
|
||||
|
||||
Given a[i], best possibility is to find another a[i]
|
||||
If not, then we can find a[i]-1 or a[i]+1
|
||||
|
||||
We basically want the numbers to be different as right as possible
|
||||
|
||||

|
||||
|
||||
Intuition: Sort the numbers. Lower the difference, lower the XOR.
|
||||
|
||||
**Proof:**
|
||||
|
||||
Consider A < B < C
|
||||
|
||||
suppose A, C differ in ith bit. Bits 0 to i-1 are same (from MSB)
|
||||
|
||||
Then, A must have a 0 there, while C must have a 1.
|
||||
|
||||
If B is b/w A, C, then B can have a 0 or a 1 there.
|
||||
|
||||

|
||||
|
||||
|
||||
- 0:
|
||||
- A^B < A^C
|
||||
- A^B < B^C
|
||||
- (both conditions are important)
|
||||
- 1:
|
||||
- B^C < A^B
|
||||
- B^C < A^C
|
||||
|
||||
In both cases, the min xor is b/w consecutive elements, and not b/w extremes.
|
||||
|
||||
|
||||
Solution: Sort. Find xor of consecutive pairs. Return min.
|
||||
O(n log n)
|
||||
|
||||
-- --
|
||||
Google Code Jam '19
|
||||
-------------------
|
||||
|
||||
> Given master server with N slaves.
|
||||
> user inputs binary string of length N
|
||||
> send each bit to one server
|
||||
> to read back, master asks slaves
|
||||
> slaves are faulty, can go down, and don't return anything
|
||||
>
|
||||
> 
|
||||
>
|
||||
> input: 1010.
|
||||
> slaves 2, 4 go down
|
||||
> read: 11
|
||||
>
|
||||
> input: 1111
|
||||
> slaves 2, 4 go down
|
||||
> read: 11
|
||||
>
|
||||
> Find out all faulty slaves by minimizing number of input queries
|
||||
>
|
||||
|
||||
|
||||
**Brute Force:** O(n). Check each slave one by one by setting just one bit each time
|
||||
|
||||
**Optimized:**
|
||||
|
||||
- we send several strings. Represented as matrix
|
||||
- If ith slave is faulty, then ith column is dropped off.
|
||||
- Say 2, 3 are faulty
|
||||
- 
|
||||
- simply encode each slave number in each column and send
|
||||
- 
|
||||
- whatever comes back are columnwise numbers of active slaves
|
||||
- 
|
||||
|
||||
Instead of sending N strings, we send strings of length N
|
||||
We only need $\log_2 N$ strings
|
||||
|
||||
|
||||
So, for $10^9$ slaves, I only need 32 queries!
|
||||
-- --
|
||||
|
||||
|
||||
Sum of Hamming Distances
|
||||
------------------------
|
||||
|
||||
> Given A[N], find sum of Hamming distance b/w each pair of elements.
|
||||
> x = 0110
|
||||
> y = 1001
|
||||
> d = 1111
|
||||
>
|
||||
|
||||
**Brute Force:** All pairs $O(n^2)$
|
||||
|
||||
**Optimized:**
|
||||
For each bit:
|
||||
count with bit set = x
|
||||
count with bit not set = y
|
||||
contribution of bit = 2^bit * x * y
|
||||
|
||||
sum up
|
||||
|
||||
**O(32 * n)**
|
||||
|
||||
|
||||
Remember the pattern? Instead of summing up all submatrix, we counted contribution of each cell. Reverse Lookup
|
||||
|
||||
-- --
|
||||
|
||||
following Kshitij's lecture
|
Reference in New Issue
Block a user